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Abstract 

Background: This study aimed to construct prognostic model by screening prognostic miRNA signature of bladder 
cancer.

Methods: The miRNA expression profile data of bladder cancer (BC) in The Cancer Genome Atlas (TCGA) were 
obtained and randomly divided into the training set and the validation set. Differentially expressed miRNAs (DEMs) 
between BC and normal control samples in the training set were firstly identified, and DEMs related to prognosis were 
screened by Cox Regression analysis. Then, the MiR Score system was constructed using X-Tile based cutoff points and 
verified in the validation set. The prognostic clinical factors are selected out by univariate and multivariate Cox Regres-
sion analysis. Finally, the mRNAs related to prognosis were screened and the biological pathway analysis was carried 
out.

Results: We identified the 7-miRNA signature was significantly associated with the patient’s Overall Survival (OS). A 
prognostic model was constructed based on the prognostic 7-miRNA signature, and possessed a relative satisfying 
predicted ability both in the training set and validation set. In addition, univariate and multivariate Cox Regression 
analysis showed that age, lymphovascular invasion and MiR Score were considered as independent prognostic fac-
tors in BC patients. Furthermore, based on MiR Score prognostic model, several differentially expressed genes (DEGs), 
such as WISP3 and UNC5C, as well as their related biological pathway(s), including cell–cell adhesion and neuroactive 
ligand-receptor interaction, were considered to be related to BC prognosis.

Conclusion: The prognostic model which was constructed based on the prognostic 7-miRNA signature presented a 
high predictive ability for BC.
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Background
Bladder cancer (BC) is one of the most common malig-
nant tumor of the urinary system, which is characterized 
by the high rate of non-muscle invasive BC (NMIBC) at 
the moment of diagnosis (75–80%) [1, 2], with approxi-
mately 3.4 million affected cases and 188,000 deaths in 

2015 [3]. Currently, the standard BC screening methods 
include cystoscopy, sonography, and urinary cytology; 
however, its high invasiveness and low accuracy still can-
not be neglected [4]. Although current treatments have 
improved 5-year survival rate of BC, most patients have 
delayed diagnosis of proximal and distal metastasis due 
to the atypical symptoms of early BC, resulting in poor 
treatment efficacy and prognosis. Radical cystectomy 
(RC) is usually performed in patients with early diagnosis 
of muscular invasive cystitis (MIBC). This is not the best 
solution because patients have a poor quality of life after 
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surgery and a high rate of recurrence and mortality in the 
short time after surgery [5]. As far as patients with BC 
are concerned, it is impossible to predict which of them 
will have disease progression. Therefore, it is important 
to further reveal novel diagnostic and therapeutic meth-
ods, as well as underlying risk factors for poor prognosis 
of BC patients.

MiRNAs (miRNAs) are endogenous non-coding single-
stranded small RNA molecules that regulate gene expres-
sion by repressing translational efficiency or decreasing 
target mRNA stability, thereby participating in various 
key cell biological processes, such as embryonic devel-
opment, tumor cell proliferation, differentiation, and 
apoptosis [6, 7]. MiRNAs are known to be dysregulated 
in BC and implicated in the pathogenesis of bladder 
tumors mainly through their effect on genes involved 
in two molecular pathways, specifically the gene which 
codes tumor protein 53 (TP53) [8] and fibroblast growth 
factor receptor 3 (FGFR3) [9]. Previous studies have 
reported that the dysregulation of miRNAs is related to 
the prognosis and the progression of BC [1], such as miR-
144-5p [10], miR-199 family [11], and miR-214 [12]. For 
example, Falzone et al. [13] reported that downregulated 
hsa-miR-145-5p and hsa-miR-214-3p may modulate the 
expression of both EMT and NGAL/MMP-9 pathways 
in BC using bioinformatic analysis. Accordingly, miR-
NAs may be considered good candidates as biomarkers 
for both prognosis and diagnosis of BC. Hence, miRNAs 
profiling studies from different tissues represent an excel-
lent alternative application for these short sequences as 
biomarkers with clinical significance. It is widely known 
that poor prognosis as a major challenge for the treat-
ment of BC leads to a low survival rate of BC patients, 
and gene mutation and environment exposure have been 
identified to be associated with this outcome. To our 

knowledge, however, a prognostic model of BC is rarely 
reported. In the current study, we aimed to develop 
a prognostic model for BC that provides some useful 
insights in improving the prognosis of BC patients and 
helps to increase their overall survival. For this purpose, 
the miRNA expression profile data of BC based on The 
Cancer Genome Atlas (TCGA) were analyzed to screen 
miRNAs related to BC prognosis and then construct a 
BC prognostic model using bioinformatic methods. In 
addition, the related clinical prognostic factors, messen-
ger RNAs (mRNAs) and biological pathways were ana-
lyzed based on this model.

Methods
Data extraction and grouping
The clinical information, the miRNA expression profile 
and the mRNA data based on the Illumina HiSeq2000 
RNA Sequencing (Illumina, San Diego, CA, USA) plat-
form of a total of 432 samples of BC patients were down-
loaded from TCGA (https ://gdc-porta l.nci.nih.gov/) [14]. 
After corresponding to clinical information of them, a 
total of 428 samples with corresponding information 
were included in our study, of which 409 were tumor 
samples (BC group) and 19 were normal control samples 
(control group). Then, BC group were randomly divided 
into two groups: 204 tumor samples utilized as the train-
ing set and 205 tumor samples utilized as the validation 
set. The clinical information of tumor samples in the 
training set and validation set are shown in Table 1.

DEMs screening in the training set
First, miRNAs with median value as 0 in the training set 
were removed, which means the read counts obtained 
through the Illumina Hiseq. Next, based on the expres-
sion information provided by TCGA, limma package 

Table 1 The clinical information of bladder cancer tumor samples in the training set and validation set

M distant metastases, N regional lymph node, T tumor size

Clinical characteristics Training set (N = 204) Validation set (N = 205)

Age (years, mean ± SD) 68.46 ± 27.57 67.69 ± 9.86

Gender (male/female) 154/50 148/57

Pathologic M (M0/M1/–) 99/7/98 96/4/105

Pathologic N (N0/N1/N2/N3/–) 122/23/36/2/21 115/23/40/6/21

Pathologic T (T1/T2/T3/T4/–) 3/65/95/27/14 1/55/99/31/19

Pathologic stage (I/II/III/IV/–) 2/71/65/65/1 0/60/74/70

Pathologic grade (high/low/–) 194/9/1 191/12/2

Radiotherapy (yes/no/–) 6/186/12 14/177/14

Lymphovascular invasion (yes/no/–) 65/73/66 85/59/61

Recurrence (yes/no) 44/126/34 43/124/38

Dead (death/alive/–) 92/110/2 86/117/2

Overall survival time (months, mean ± SD) 26.76 ± 27.57 27.45 ± 28.19

https://gdc-portal.nci.nih.gov/
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(version 3.34.7, https ://bioco nduct or.org/packa ges/relea 
se/bioc/html/limma .html) [15] in R 3.4.1 was used to 
screen DEMs between BC and normal control samples 
with the thresholds of false discovery rate (FDR) < 0.05 
and |log fold change (FC)| > 1. At last, according to the 
expression values of DEMs in the training set, bidirec-
tional hierarchical clustering based on centered Pearson 
correlation algorithm was performed by pheatmap (ver-
sion 1.0.8, https ://cran.r-proje ct.org/web/packa ges/pheat 
map/index .html) [16] in R 3.4.1.

DEMs screening related to prognosis
Combined with the clinical prognostic information of BC 
samples in the training set and the expression levels of 
DEMs, DEMs related to the OS were screened by Uni-
variate Cox Regression analysis survival package (version 
2.41.3, https ://cran.r-proje ct.org/web/packa ges/survi val/
index .html) [17] in R 3.4.1, with the threshold of log-rank 
p-value < 0.05.

Construction and verification of prognosis risk assessment 
model based on DEMs levels
Based on DEMs related to prognosis, the optimized 
DEMs signature was screened using LASSO Cox Regres-
sion model [18] of penalized package (version 0.9.50, 
https ://cran.r-proje ct.org/web/packa ges/penal ized/index 
.html) [19] in R  3.4.1. The optimized parameter lambda 
in this model was obtained by 1000 cycles calculation 
of cross-validation likelihood (cvl) algorithm. Subse-
quently, the cutoff value of the optimized DEM signature 
was calculated using X-Tile Bio-Informatics Tool (https 
://medic ine.yale.edu/lab/rimm/resea rch/softw are.aspx) 
[20] with the threshold of Monte-Carlo p-value < 0.05. 
The sample status was defined according to the cut-
off value of each miRNA: status = 1 when the expres-
sion level of miRNA > the cutoff value; while status = 0 
when the expression level of miRNA < the cutoff value 
[21]. After that, the risk assessment model (MiR score) 
was constructed for each sample by the linear combina-
tion of miRNA status weighted by regression coefficient 
as follows: MiR Score = ∑βmiRNA n × Status miRNA n. The 
β represented prognostic regression coefficient and sta-
tus was defined as previously mentioned. We found that 
technical biases of miRNA data from the TCGA are not 
affecting the differential expression due to the presence 
of sequencing procedures or batches. According to the 
median value of MiR Score, all samples in the training 
set were divided into high risk and low risk groups. The 
Kaplan–Meier (K–M) survival curve analysis was used to 
estimate the prognosis difference between high risk and 
low risk groups. Meanwhile, Area Under Receiver Oper-
ating Characteristic (AUROC) curve analysis was used 
to assess the prognostic model. Similar to the above, all 

samples in the validation set were divided into high risk 
and low risk groups, and this model was further verified 
in the validation set and assessed using K–M survival 
analysis and Receiver Operating Characteristic (ROC) 
curve.

Further analysis of the prognostic factors
The independent prognostic factors based on the clini-
cal information of tumor samples in the training set and 
validation set were analyzed using univariate and multi-
variate Cox Regression analysis survival package (version 
2.41.1) in R 3.4.1. Based on these independent prognostic 
factors, the nomogram of 3- and 5-year survival predic-
tion models were constructed using rms package (ver-
sion 5.1-2, https ://cran.r-proje ct.org/web/packa ges/rms/
index .html) in R 3.4.1.

The screening of mRNA related to prognosis and pathway 
analysis
The RNA-seq profile data of BC which paired with 
miRNA expression profile data were extracted, and then 
divided into high risk and low risk groups according to 
MiR Score. Next, differentially expressed genes (DEGs) 
between high risk and low risk groups were screened 
using limma package with the thresholds of FDR < 0.05 
and log FC > 1. Following this, Gene Ontology (GO) func-
tional annotation associated with biological process anal-
ysis [22] and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis [23] were carried 
out using Database for Annotation, Visualization and 
Integrated Discovery (DAVID) program (v 6.8, https ://
david .ncifc rf.gov/) [24]. The p value < 0.05 was consid-
ered as the cutoffs for significantly statistical difference in 
functional analyses.

Results
DEMs screening in the training set
Among all samples contained in the training set, miRNAs 
with median value of read counts as 0, which indicate 
not expressed miRNAs, were filtered (Fig. 1a). Based on 
the selective criteria, a total of 134 DEMs were identified 
between BC and normal control samples, including 18 
downregulated and 116 upregulated miRNAs (Fig.  1b). 
Then, bidirectional hierachical clustering was conducted 
for these 134 DEMs, indicating that these identified 
DEMs could significantly distinct tumor samples from 
the normal controls (Fig. 1c).

Construction and verification of prognostic models
Among 204 BC samples in the training set, survival prog-
nostic information was recorded in 202 BC samples. 
Based on the above 134 DEMs between BC and controls, 
univariate Cox Regression analyses were performed, and 

https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/penalized/index.html
https://cran.r-project.org/web/packages/penalized/index.html
https://medicine.yale.edu/lab/rimm/research/software.aspx
https://medicine.yale.edu/lab/rimm/research/software.aspx
https://cran.r-project.org/web/packages/rms/index.html
https://cran.r-project.org/web/packages/rms/index.html
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
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then a total of 21 DEMs were significantly associated 
with the patient’s OS. Based on these 21 DEMs, the opti-
mized DEMs signatures were screened by LASSO Cox 
Regression model. After 1000 cycles calculation of cvl 
algorithm, lambda was confirmed as 11.567 and the max-
imum value of cvl was − 509.633 (Fig.  2a). As a result, 
7 DEMs, including hsa-miR-1247, hsa-miR-1304, hsa-
miR-1911, hsa-miR-204, hsa-miR-33b, hsa-miR-3934, 
and hsa-miR-526b, were obtained (Fig. 2b, Table 2). The 
cutoff value of these 7 DEMs was calculated using X-Tile 
Bio-Informatics Tool (Table 2). 

According to the miRNA status, the MiR Score risk 
assessment model was constructed as follows: MiR 
Score = (0.0331) × Statushsa-mir-1247 + (0.0375) × Statushsa-

mir-1304 + (0.1274) × Statushsa-mir-1911 + (0.1443) × Statushsa-

mir-204 + (0.2346) × Statushsa-mir-33b + (− 0.1378) × Sta-
tushsa-mir-3934 + (0.0662) × Statushsa-mir-526b. The 
distribution of the MiR Score in the training set and vali-
dation set are shown in Fig. 3a left and b left, respectively. 
ROC curve analysis revealed that the area under curve 

(AUC) of 3- and 5-year survival were 0.781 and 0.778 in 
the training set, as well as 0.781 and 0.762 in the valida-
tion set, respectively, indicating that this model possessed 
a relative satisfying predicted ability both in the training 
set and validation set (Fig. 3a, b middle). Meanwhile, the 
estimation of K–M survival analysis showed that the OS 
of patients in the low-risk group was significantly longer 
than that in the high-risk group (p = 1.905 × 10−10, and 
p = 8.821 × 10−3, Fig. 3a, b right) in the training set and 
validation set, respectively.

The independent prognostic factors analysis
Univariate and multivariate Cox Regression analysis 
showed that age > 65  years [hazard ratio  =  1.016, 95% 
confidence interval (CI) 1.011–1.430, p = 2.034 × 10−2 
and HR = 1.069, 95% CI 1.0262–1.113, p = 1.340 × 10−3], 
lymphovascular invasion (HR = 1.709, 95% CI 0.893–
3.274, p = 1.050 × 10−2 and HR = 1.338, 95% CI 1.056–
3.177, p = 4.509 × 10−2) and MiR Score (HR = 3.431, 95% 
CI 1.919–6.130, p = 3.180 × 10−5 and HR = 2.353, 95% CI 

a c

b

Fig. 1 a The density distribution curve of miRNA expression values before and after filtering. b Volcano map. Orange triangle, blue triangle, and 
black dots indicate genes are up-regulated, down-regulated, and non-significant differentially expressed miRNAs, respectively. c A bidirectional 
hierarchical clustering map based on 134 DEGs. Blue and orange sample bars represent normal control samples and tumor samples
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1.0702–5.176, p = 3.328 × 10−2) were considered as the 
independent prognostic factors in BC patients both in 
the training set and validation set, respectively (Table 3). 
Furthermore, the nomogram of 3- and 5-year survival 

prediction models of these independent prognostic fac-
tors were constructed as Fig. 4a. The nomogram of 5-year 
survival prediction showed compliance to actual 5-year 
survival (Fig. 4b). 

Functional enrichment analysis of DEGs related 
to prognosis
Based on the selective criteria, a total of 389 DEGs 
were identified between high risk and low risk groups, 
including 33 downregulated and 356 upregulated genes, 
in which several DEGs, such as WISP3 and UNC5C 
were related to biological pathway (Fig.  5a). WISP3 and 
UNC5C are the significant DEGs between high risk and 
low risk group. Then, clustering analysis for these DEGs 
was conducted, indicating that these identified DEGs 
could significantly distinct high risk from low risk groups 
(Fig.  5b). To further identify the functional characteris-
tics of DEGs, the functional enrichment analyses of genes 
were conducted with DAVID. Consequently, the Biology 
Process (BP) analysis of DEGs revealed that the signifi-
cant enriched terms primarily concentrated on ion trans-
port, cell–cell adhesion, neurological system process, 
metal ion transport, cell–cell signaling, cation transport, 
transmission of nerve impulse, neuron differentiation, 
synaptic transmission, muscle contraction, and cell mor-
phogenesis involved in neuron differentiation (Fig. 5c). In 
addition, the KEGG pathway analysis implied that these 
DEGs were responsible for neuroactive ligand-receptor 
interaction, calcium signaling pathway, cell adhesion 
molecules, and gap junction pathways (Fig. 5c, Table 4).

Discussion
In this study, 21 miRNAs related to BC prognosis were 
identified based on the expression levels in TCGA by uni-
variate and multivariate Cox Regression analysis. Then, 
seven out of them were further isolated as the optimized 
prognostic gene signature and a MiR Score prognostic 
model was constructed based on these seven miRNAs 
(hsa-mir-1247, hsa-mir-1304, hsa-mir-1911, hsa-mir-204, 
hsa-mir-33b, hsa-mir-3934 and hsa-mir-526b), which 
presented a relative highly forecast ability for BC. In 
addition, age, lymphovascular invasion and MiR Score 
were identified as the independent prognostic factors in 
BC patients from TCGA. Furthermore, based on MiR 
Score prognostic model, several DEGs, such as WISP3 
and UNC5C, as well as their related pathway, including 
cell–cell adhesion and neuroactive ligand-receptor inter-
action, were considered to be related to BC prognosis. 
Besides, we found UNC5C is a potential target for hsa-
mir-1911, hsa-mir-3934 and hsa-mir-526b through Tar-
getscan, which belongs to the UNC-5 family of netrin 
receptors. Netrins are secreted proteins that direct axon 
extension and cell migration during neural development 

a

b

Fig. 2 a The lambda parametric curves by cross-validation likelihood 
(cvl) algorithm. Horizontal axis and vertical axis represent lambda and 
cvl, respectively; the intersection of green dotted line represent that 
the maximum value of cvl was -509.633 when lambda was 11.567. b 
Coefficient distribution diagram of the optimized seven DEMs related 
to prognosis based on LASSO Cox Regression model

Table 2 The optimized seven differentially expressed 
miRNAs related to prognosis in bladder cancer

β prognostic regression coefficient; HR hazard ratio

miRNA_ID β HR 95% CI p-value X-tile cutoff

hsa-
miR-1247

0.0331 1.0282 0.9199–
1.1492

0.0062 2.76

hsa-
miR-1304

0.0375 1.2148 0.9590–
1.5388

0.0107 1.91

hsa-
miR-1911

0.1274 1.2425 1.0912–
1.4146

0.0010 2.42

hsa-miR-204 0.1443 1.2205 1.0321–
1.4432

0.0198 0.96

hsa-miR-33b 0.2346 1.2055 0.8228–
1.7662

0.0338 2.78

hsa-
miR-3934

− 0.1378 0.6204 0.4611–
0.8349

0.0016 1.09

hsa-miR-
526b

0.0662 1.4881 0.9502–
2.3303

0.0424 4.74
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(NCBI, https ://www.ncbi.nlm.nih.gov/). At present, stud-
ies have indicated that UNC5C was associated with colo-
rectal cancer [25, 26] and Alzheimer’s Disease [27]. Thus, 
further studies are needed to identify the association 
between UNC5C and hsa-mir-1911, hsa-mir-3934 and 
hsa-mir-526b in BC patients.

The mining of a large amount of genetic data in various 
diseases have been enhanced due to the rapid technologi-
cal advances in high-throughput sequencing and bioin-
formatics [28]. TCGA, as a public and available cancer 
genomic database, provides comprehensive data  for dif-
ferent types of cancer, including mRNA expression data, 

miRNA expression data, copy number variation, DNA 
methylation, and clinical information [29]. The data from 
TCGA have been effectively applied to improve diagnos-
tic and therapeutic methods of cancers, as well as finally 
cancer prevention [29]. Thus, this study was also per-
formed based on the miRNA expression profile data and 
clinical information of BC form TCGA. MiRNA expres-
sion profiles have been reported to predict the progno-
sis outcome of cancers [30]. Computationally, univariate 
and multivariate Cox Regression were the most common 
method to construct the prognostic models and screen 
prognostic factors [31]. In this study, the Cox Regression 

a

b

Fig. 3 a The sample distribution ofthe MiR Score in the training set (left), purple and gray bars represent samples of death and survival, respectively; 
ROC curve analysis of 3- and 5-year survival for MiR Score risk assessment model in the training set (middle); the K–M survival analysis of low- and 
high- risk groups in the training set (right), HR represents hazard ratio, and the number in parentheses indicates 95% confidence interval (CI). b The 
sample distribution of the MiR Score in the validation set (left), purple and gray bars represent samples of death and survival, respectively; ROC 
curve analysis of 3- and 5-year survival for MiR Score risk assessment model in the validation set (middle); the K–M survival analysis of low- and 
high-risk groups in the validation set (right), HR represents Hazard Ratio, and the number in parentheses indicates 95% confidence interval (CI)

https://www.ncbi.nlm.nih.gov/
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model based on the LASSO, a semi-parametric propor-
tional hazards model, was applied. The availability of this 
model in survival analysis have been confirmed in recent 
studies [32, 33]. Similarly, in this study, the MiR Score 
prognostic model constructed by LASSO Cox Regression 
model showed a higher predictive ability both in train-
ing and validation sets. In addition, this study showed 
that age and lymphovascular invasion were independent 
prognostic factors in BC patients. Consistent with our 
results, previous studies have also demonstrated that age 
and lymphovascular invasion are associated with poor 
prognosis in BC patients [34], Notably, MiR Score was 
also been considered as an independent prognostic factor 
in BC patients, which further showed that the MiR Score 
prognostic model had a significant predictive ability for 
BC prognosis.

In this study, the 7-miRNA signature was identified. 
Specifically, miR-1247, as a tumor suppressor, has been 
reported in several cancers, including lung cancer [35], 
hepatocellular cancer [36], and pancreatic cancer [37]. A 
recent study also has shown that miR-1247 inhibits cell 

proliferation and invasion through down-regulating its 
target gene RAB36 in BC [38]. MiR-204, miR-33b, and 
miR-526b are three reported miRNAs that function as 
tumor suppressor in cancers. Previous studies have sug-
gested that miR-204 plays an inhibitory effect on cell 
invasion in gastric cancer cells [39] and non-small cell 
lung cancer [40]. MiR-33b has been reported to inhibit 
migration and invasion in osteosarcoma cells [41], mela-
noma cells [42], and lung adenocarcinoma cells [43]. In 
addition, miR-526b is revealed to have an inhibitory role 
in non-small cell lung cancer [44]. However, studies of 
these three miRNAs as well as miR-1304, miR-1911, 
and miR-3934 are rarely reported in BC. Therefore, it is 
important to further reveal the mechanism and prognos-
tic significance of 7-miRNA signature in BC.

Furthermore, this study found that several DEGs, such 
as WISP3 and UNC5C, were closely associated with BC 
prognosis. WISP3, also known as cellular communication 
network factor 6 (CCN6), is a cysteine-rich and glyco-
sylated signaling protein and key regulatory extracellu-
lar matrix component [45]. It is one member of the CCN 

Table 3 Univariate and multivariate Cox Regression analysis of tumor samples in the training set and validation set

Italic values indicate p value < 0.05

M distant metastases, N regional lymph node, T tumor size, HR hazard ratio

Clinical characteristics Uni-Cox regression Multi-Cox regression

HR [95% CI] p-value HR [95% CI] p-value

Training set

 Age (years, mean ± SD) 1.026 [1.006–1.047] 9.392 × 10−3 1.016 [1.011–1.430] 2.034 × 10−2

 Gender (male/female) 0.996 [0.625–1.588] 9.867 × 10−1 – –

 Pathologic M (M0/M1/–) 1.525 [0.544–4.278] 4.180 × 10−1 – –

 Pathologic N (N0/N1/N2/N3/–) 1.611 [1.289–2.013] 1.615 × 10−5 0.999 [0.593–1.684] 6.340 × 10−1

 Pathologic T (T1/T2/T3/T4/–) 1.594 [1.175–2.163] 2.619 × 10−3 0.858 [0.486–1.516] 9.980 × 10−1

 Pathologic stage (I/II/III/IV/–) 1.661 [1.288–2.142] 6.357 × 10−5 1.498 [0.926–2.424] 3.970 × 10−1

 Pathologic grade (High/low/–) 3.164 [0.439–22.77] 2.27 × 10−1 – –

 Radiotherapy (yes/no/–) 0.948 [0.233–3.863] 9.402 × 10−1 – –

 Lymphovascular invasion (yes/no/–) 2.411 [1.441–4.034] 5.576 × 10−4 1.709 [0.893–3.274] 1.050 × 10−2

 Recurrence (yes/no) 1.621 [0.986–2.667] 5.473 × 10−2 – –

 MiR score (high/low) 3.926 [2.500–6.165] 1.905 × 10−10 3.431 [1.919–6.130] 3.180 × 10−5

Validation set

 Age (years, mean ± SD) 1.038 [1.013–1.064] 2.272 × 10−3 1.069 [1.0262–1.113] 1.340 × 10−3

 Gender (male/female) 1.275 [0.808–2.011] 2.955 × 10−1 – –

 Pathologic M (M0/M1/–) 23.27 [6.683–81.03] 5.850 × 10−1 – –

 Pathologic N (N0/N1/N2/N3/–) 1.564 [1.231–1.987] 1.749 × 10−3 1.652 [0.854–3.195] 1.359E−01

 Pathologic T (T1/T2/T3/T4/–) 1.985 [1.421–2.773] 5.099 × 10−5 1.858 [0.937–3.690] 7.634 × 10−2

 Pathologic stage (I/II/III/IV/–) 1.836 [1.374–2.453] 2.048 × 10−5 0.668 [0.276–1.617] 3.710 × 10−1

 Pathologic grade (high/low/–) 2.637 [0.365–19.07] 3.180 × 10−1 – –

 Radiotherapy (yes/no/–) 1.188 [0.516–2.736] 6.850 × 10−1 – –

 Lymphovascular invasion (yes/no/–) 2.335 [1.338–4.074] 2.119 × 10−3 1.338 [1.056–3.177] 4.509 × 10−2

 Recurrence (yes/no) 2.023 [1.171–3.495] 1.002 × 10−2 1.002 [0.468–2.144] 9.960 × 10−1

 MiR score (high/low) 1.772 [1.148–2.734] 8.821 × 10−3 2.353 [1.0702–5.176] 3.328 × 10−2
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(Cyr61, CTGF, Nov) family which play important roles in 
several biological functions, including cell proliferation, 
adhesion, and invasion [45], which suggested the close 
relationship of WISP3 and cell–cell adhesion. Increas-
ing evidences have demonstrated that WISP3 is abnor-
mally expressed in cancers and play a contrary effect 
in cancer progression [46]. It is reported that WISP3 is 
overexpressed as an oncogene in ovarian carcinomas 
[47]. On the contrary, WISP3 is a tumor suppressor gene 
that inhibits cell proliferation in breast cancer [48]. Zeng 
et  al. [49] has found that depletion of WISP3 notably 

inhibited the invasion of BC cells. Our data suggests 
that inhibition of WISP3 may be a therapeutic strategy 
for BC. Recent study has found that WISP3 is up-regu-
lated and promotes the cell proliferation and invasion in 
BC cells, which is consistent with our results. UNC5C 
(unc-5 netrin receptor C) belongs to the netrin-1 recep-
tor family, and plays key role in cell apoptotic process as 
a dependence receptor that may be involved in neuroac-
tive ligand-receptor interaction [50]. Previous reports 
have suggested that UNC5C has tumor suppressive effect 
in colorectal cancer through promoter methylation [51]. 

a

b

Fig. 4 a The nomogram of 3- and 5-year survival prediction models for these independent prognostic factors. b The nomogram of 5-year survival 
prediction compliant to actual 5-year survival
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In addition, UNC5C is reported to be downregulated 
due to specific genetic alterations and inhibits apopto-
sis of tumor cells by suppressing proapoptotic signals 
[52]. More recently, the receptors of UNC5 family have 
been revealed to be involved in the regulation of cell 
death processes in BC [53, 54]. However, there were still 
a number of limitations in the work. Functional valida-
tion was lacked for the feature genes obtained herein. 
Further investigations for these genes are required with 

substantial experiments. Nevertheless, this work pro-
vides novel insight into the pathogenesis of BC.

Conclusion
In conclusion, the prognostic model based on the prog-
nostic 7-miRNA signature presented a relatively prom-
ising predictive ability for BC. The seven prognostic 
miRNAs may have clinical implications in BC progno-
sis. However, the prognostic significance of 7-miRNA 
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signature in BC should be futher confirmed in clinical 
study.
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