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Abstract 

Background: Colorectal cancer is known to be the most common type of cancer worldwide with high disease-
related mortality. It is the third most common cancer in men and women and is the second major cause of death 
globally due to cancer. It is a complicated and fatal disease comprising of a group of molecular heterogeneous 
disorders.

Results: This study identifies the potential biomarkers of CRC through differentially expressed analysis, system biol-
ogy, and proteomic analysis. Ten publicly available microarray datasets were analyzed and seven potential biomarkers 
were identified from the list of differentially expressed genes having a p value < 0.05. The expression profiling and 
the functional enrichment analysis revealed the role of these genes in cell communication, signal transduction, and 
immune response. The protein–protein interaction showed the functional association of the source genes (CTNNB1, 
NNMT, PTCH1, CALD1, CXCL14, CXCL8, and TNFAIP3) with the target proteins, such as AXIN, MAPK, IL6, STAT, APC, 
GSK3B, and SHH.

Conclusion: The integrated pathway analysis indicated the role of these genes in important physiological responses, 
such as cell cycle regulation, WNT, hedgehog, MAPK, and calcium signaling pathways during colorectal cancer. These 
pathways are involved in cell proliferation, chemotaxis, cellular growth, differentiation, tissue patterning, and cytokine 
production. The study shows the regulatory role of these genes in colorectal cancer and the pathways that can be 
effected after the dysregulation of these genes.
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Background
After breast and lung cancer, colorectal cancer (CRC) 
has been diagnosed to be the third most common malig-
nancy. It is the fourth leading cause of death with 1.4 mil-
lion cases and almost 694,000 deaths. CRC is the third 

most common malignancy in males after prostate and 
lung cancer and second in females after breast cancer. 
The incidence rate of CRC has been rising in the devel-
oping countries due to westernization that is causing 
increased risk factors for CRC [1]. About 60% increase 
in the global burden of CRC, based on the demographic 
projections, is estimated to occur with 2.2 million new 
cases and 1.1 million deaths by 2030. More than 25% of 
patients with colorectal cancer are diagnosed with meta-
static disease. Therefore, for improved sensitivity and 
specificity of detection of CRC new biomarkers have 
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been developed [2]. Numerous risk factors are known to 
be associated with the progression of CRC with 95% of 
cases having adenocarcinomas. This includes enhanced 
alcohol intake, reduced physical exercise, a poor diet plan 
that is rich in fats and poor in fibers, personal or familial 
history of polyps, age greater than 50, and inflammatory 
bowel disease [3].

Following the development of colorectal carcinoma, 
the subsequent genetic and epigenetic alterations in 
specific oncogenes and/or tumor suppressor genes of 
gastrointestinal epithelial cells causes it to undergo cell 
proliferation and self-renewal, triggering the normal epi-
thelium to be hyperproliferative mucosa. This results in 
a benign adenoma that eventually grows into carcinoma 
and in about 10 years becomes metastatic [4].

The normal epithelial cells of the gastrointestinal tract 
are arranged along a crypt-villus axis. The undifferenti-
ated pool of colon stem cell and progenitor cells having 
the ability of self-renewal and pluripotency are found at 
the bottom of the crypt. These cells while moving along 
the axis undergo differentiation in all epithelial colon 
lineages. Whilst these cells arrive at the top of the axis 
which usually takes 14  days they result in apoptosis. 
Several proteins are known to be involved in the regu-
lation of this process such as BMP, Wnt, and TGF-β [4]. 
The onset of CRC has shown the involvement of vari-
ous altered molecular signaling pathways that may result 
in the resistance to anti-tumor agents. These pathways 
include the Wnt/APC/β-catenin, transforming growth 
factor-β (TGF)-β/Smad, phosphoinositide 3-kinase 
(PI3K)/AKT/glycogen synthase kinase-3B and NF-κβ.

The diagnosis of CRC plays a pivotal role in the early 
prediction of CRC. If detected early it can be treated with 
surgery alone, however, in metastatic disease along with 
surgery chemotherapy is included. Presently, the predic-
tion of CRC is based on the classification of the American 
Joint committee on Cancer (AJCC), TNM staging. But 
because each stage is a heterogeneous group of disease 
it is difficult to relate the TNM staging with prognosis. 
A more rapid and cheaper form of molecular characteri-
zation of cancer has become possible with the advance-
ment of NGS technology. Most of the genetic biomarkers 
have gained a clinical value as a prognostic or therapeutic 
marker such as the MSI and the EGF signaling pathway 
[4].

To get a clear picture of the carcinogenesis, tumor 
growth and metastasis of colorectal cancer, the micro-
array analysis has been proved useful to gather infor-
mation on thousands of genes at a time. The genomic 
alterations occurring in colorectal cancer can be identi-
fied by microarray analysis which can help in the diag-
nosis, characterization, and treatment of colorectal 
cancer [5]. However, certain challenges are still faced in 

the application of microarray assays according to some 
studies. One approach to overcome such challenges is to 
utilize the online Gene Expression Omnibus (GEO) data-
base. This database can assist in increasing the size of the 
sample, statistical power and sample heterogeneity [6–8].

The aim of this study is to screen out significant CRC 
associated genes that can act as candidate biomarkers to 
detect early cancer and to elucidate the pathogenesis of 
CRC. The differential expression analysis of ten micro-
array datasets was performed to identify the candidate 
genes based on significant scoring function. The expres-
sion profiling of these genes was also performed to deter-
mine the expression patterns of these potential markers 
in several tissues. Cluster analysis and Functional enrich-
ment analysis was employed to confirm the function and 
association of shortlisted genes in causing CRC. The pro-
tein–protein interaction and pathway analysis confirmed 
the association of candidate genes with colorectal can-
cer and the regulation of Wnt, NF-κβ, and MAPK. The 
search for new predictive, diagnostic and prognostic bio-
markers in colorectal cancer is of great importance and 
has become the goal of biomedical research on CRC. The 
study will aid in the biomarker discovery by getting valu-
able insights through studying these molecular networks 
that can be used in public datasets for better outcomes in 
other diseases as well.

Methods
Accession of gene expression data
The aim of this study was to identify potential targets 
for colorectal cancer. The gene expression datasets of 
colorectal cancer were accessed from the Gene Expres-
sion Omnibus database under two screening conditions 
(organism: Homo sapiens, experiment type: expression 
profiling by an array). Each dataset comprises of GEO 
accession number, platform, sample type, number of 
samples and gene expression data. The array platform 
used was Affymetrix GeneChip Human Genome U133 
Plus 2.0 Array (CDF: Hs133P_Hs_ENST, version 10) 
(Affymetrix, Inc., Santa Clara, CA, 95051, USA, Tech-
nology: in  situ oligonucleotides). In order to detect the 
gene expression, the array platform and the annotation 
information (hgu133plus2) of probes were used. Compu-
tational analysis was performed using R and BioConduc-
tor packages containing AffyQCReport, Affy, Annotate, 
AnnotationDbi, Limma, Biobase, AffyRNADegradation, 
hgu133plus2cdf, and hgu133a2cdf.

Preprocessing and differential expression analysis 
of microarray datasets
The phenodata files were prepared for each dataset in a 
recognizable format [9]. The normalization of the data 
was done using Bioconductor “ArrayQuality Metrics” 
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package on R version 3.1.3 to a median expression level 
of each gene [10–12]. This was done to compare the 
microarray data sets. The background correction for per-
fect matches (PM) and mismatches (MM) was performed 
by the Robust Multi-array Analysis (RMA) in order to 
remove local noise and artifacts [9]. Perfect matches 
(PM) and mismatches (MM) was calculated using the fol-
lowing equation. 

where, PM is a perfect match, Background (BG) caused 
by optical noise and non-specific binding (S); ijk is the 
signal for probe j of probe set k on array i. 

 

The background (BG) and the signal expression (E) 
forms the PM-data. The dataset normalized to median 
level expression was analyzed by the “Array Quality 
Metrics” package of Bioconductor software [10–12]. 
Expression value having a p-value < 0.15 was considered 
marginal log transformation. For each dataset, the gene–
gene covariance matrix was calculated across all array 
(54675 Affyids) using the following formula. 

where F1 and F2 are distribution functions of the actual 
and reference chips, respectively.

To attain the summary of intensities the RMA-algo-
rithm was used to calculate the averages between probes 
in a probe set.

The degradation analysis to measure the quality of 
RNA in these datasets, AffyRNADegradation package 
of Bioconductor was used (Affymetrix, 1999, 2001). The 
pairwise comparison was done to identify the DEGs in 
each dataset and for multiple testing correction Ben-
jamini–Hochberg method was employed. The differ-
entially expressed genes were shortlisted along with 
measurement of quality weights. The shortlisted genes 
were ranked according to their p values and the resulting 
scores. Significant cut off values was set to calculate the 
moderated statistics with p-value ≤ 0.05, FDR < 0.05 (false 
discovery rate), absolute log fold change (logFC) > 1 and 
FDR < 0.05 (false discovery rate) [13].

Curation of CRC‑related genes
The shortlisted DEGs were further screened for colo-
rectal associated genes using diverse data source includ-
ing PubMed, MeSH, OMIM, and PMC database to filter 
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significant disease specific genes. The cluster analysis 
[14] was performed based on expression values in each 
dataset of CRC-related differential expressed genes in 
order to identify the variations in gene expression levels 
between treated and untreated replicates using CIM-
miner tool [15].

Functional enrichment analysis
In order to understand the biological functions of these 
CRC related genes the Gene ontology, functional annota-
tion and pathway enrichment analysis [16, 17] was per-
formed. The web-based tools used for this purpose were 
DAVID (Database for Annotation Visualization and Inte-
grated Discovery) [18] and FunRich Annotation tools 
[19].

Protein–protein interaction network
The topology and functional protein interactions are 
useful to analyze the biological and pathological condi-
tions of a specific disease. The protein–protein interac-
tion helps in identifying these features and the functional 
relationship of such proteins can be interpreted through 
genomic associations [17, 20]. The PPI network shows 
the interaction of each protein with a number of other 
genes with biological or molecular functions having dif-
ferent activity in the pathological state as compared to 
normal [21]. Proteins that interacted with each other 
during colorectal cancer were evaluated from STRING 
(Search Tool for the Retrieval of Interacting Genes/Pro-
teins) [21] and HAPPI databases (Human Annotated 
and Predicted Protein Interaction) databases [22] with a 
confidence score of 0.999. Cytoscape software (version 
3.2.1) was used to visualize the molecular and network 
interaction to identify the role of seeder and target genes 
in CRC [23]. The network showed the role of each tar-
get gene signatures that interacted with CRC associated 
source genes in colorectal cancer. The role was deter-
mined by mapping the target gene with seeder genes 
using, OMIM, MeSH, and PMC databases. The gene 
mapping determines the potential colorectal related gene 
signatures to be functionally related whose dysregulation 
causes a disease phenotype. The total number of target 
genes interacted with each source protein was calculated. 
A molecular sub-network of those genes that were asso-
ciated with pathways of interest causing colorectal can-
cer was constructed. The topological network properties 
were calculated using Network Analyzer in Cytoscape 
[24].

Integrated pathway modeling
The integrated and metabolic networks of CRC-related 
source genes were analyzed and the Co-relation between 
test genes was observed. To recognize the underlying 
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pathways involved in the progression of CRC the path-
way analysis was performed which could help in iden-
tifying the biomarkers of this disease. The curation and 
mapping of candidate biomarkers were done using 
KEGG (Kyoto Encyclopedia of Genes and Genomes) 
[25], Reactome and Wiki pathways. PathVisio3tool was 
used to reconstruct the cellular and signaling pathways of 
potential biomarkers [26] and the potential mechanism 
of each marker in the pathway was studied based on the 
pieces of evidence available in literature and databases. 
For cross-verifications, we used TCGA and the Human 
Protein Atlas databases and analyzed the expression level 
of ranked DEGs in colorectal cancer.

Results
Microarray analysis and normalization
Ten datasets were downloaded from online GEO data-
base with .CEL format related to CRC. The size of an 
array of AffyBatch object comprised of 1164 × 1164 and 
732 × 732 features with related Affyids (Table 1). In order 
to avoid the systematic variation, the quantile normaliza-
tion was used for background correction and normaliza-
tion. The probe level data obtained after normalization 
shows the quality of the individual array of each data-
set in the MA plots (Fig.  1). The computation of gene–
gene covariance matrix across all arrays was performed 
by ignoring the missing values in each dataset and to 
assure they were on a similar scale to log–transform the 
arrays. In each probe sets, the probes were arranged by 
location relative to the 5′ end of the targeted RNA mol-
ecule. The severity of RNA-degradation and significance 
level was presented by function plotAffyRNAdeg (Fig. 2) 
and a single summary statistic for each array in the batch 
was produced by the function summary of AffyRNAdeg 
(Additional file 1: Table S1). The list of databases, tools, 
and software used in this study are available in (Addi-
tional file 1: Table S2).

Identification and screening of differentially expressed 
genes
About 50 DEGs in each microarray dataset were identi-
fied by pairwise comparison between biologically com-
parable groups. From these 50 DEGs, the top 20 genes 
in each dataset were ranked and selected based on FDR 
(< 0.05), p-value (≤ 0.05) and logFC (> 1) parameters. And 
from these 20 genes, seven common genes of each data-
set were identified as the potential biomarker candidate 
(Additional file 1: Table S3).

Data mining and cluster analysis
The seven significant colorectal cancer associated genes 
shortlisted from the differentially expressed genes were 
CALD1, CTNNB1, CXCL14, PTCH1, CXCL8, TNFAIP3, 

and NNMT after mapping with PubMed, OMIM, MeSH, 
and PMC databases. The role of sorted genes in colorec-
tal cancer was curated and counted (Table 2).

The genetic expression of colorectal cancer cell sam-
ples showed a clear difference between the treated and 
untreated groups (Fig. 3).

Gene enrichment analysis
Significant enrichment was obvious in 5 downregulated 
and 2 upregulated genes. The clinical phenotypes associ-
ated with the dysregulation of these genes are pilomatrix-
oma, congenital lung cyst and ovarian fibromata (Fig. 4a). 
The biological processes are related to cell communica-
tion, signal transduction, immune response, energy, 
metabolism and cell growth and maintenance (Fig. 4b).

Gene network analysis
In PPI, a total of 233 nodes and 134 edges were retrieved 
from STRING [21] and HAPPI database [22] with a con-
fidence score of 0.99. The database showed the interac-
tion of CRC-associated genes with potential other genes 
that were contributing to a disease phenotype. The net-
work was categorized into three neighborhoods: light 
pink and red nodes indicate the CRC-associated poten-
tial biomarkers while the remaining blue nodes repre-
sent the other target proteins. The potential biomarkers 
were found to functionally interact with other biologi-
cally essential target proteins. Some of them are, APC, 
IL6, MAPK1, NFkb1 and SHH (Fig. 5). The source pro-
tein CTNNB1 was shown to be interacting with APC 
and NNMT showed interaction with CDK38 and STAT3. 
Similarly, CALD1 is associated with MAPK1 while, 
PTCH1 shows interaction with a family of hedgehog 
proteins SHH, IHH and DHH with clinical phenotypes. 
The network analyzer was used to classify and improve 
the network performance and to interpret the topological 
properties of the network. The disease gene mapping of 
target genes using CTD showed that more than 50 genes 
have a functional relation with the source/seeder genes in 
CRC (Fig. 5).

Pathway modeling
The source genes identified were further studied to evalu-
ate the molecular mechanism of these genes in CRC. 
The network generated after reconstruction showed that 
several pathways were involved in the pathogenesis of 
colorectal cancer. Along with the Wnt pathway and the 
canonical pathway other pathways, the MAPK pathway, 
Calcium signaling pathway, metabolic pathway and RIG-
like 1 receptor pathway have also shown a connection 
with colorectal cancer (Fig. 6). The gene ontology of these 
pathways is associated with cell proliferation, chemot-
axis, stem cell maintenance, and apoptosis. Therefore, 
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Table 1 List of cDNA datasets

Accession No. Total samples Tissues Species Conditions/
type

Platform Size of arrays AffyIDs References

GSE 9412 6 Colorectal 
cancer

Homo sapiens Sensitive vs 
resistant

GPL571 [HG-
U133A_2] 
Affym-
etrix Human 
Genome 
U133A 2.0 
Array

732x732 fea-
tures

22277 Selga et al. [34]

GSE 11440 6 Colon Homo sapiens Sensitive vs 
resistant

GPL570 [HG-
U133_Plus_2] 
U133 Plus 2.0 
Array

1164x1164 
features

54675 Mencia et al. [35]

GSE14773 8 Colon Homo sapiens Control vs 
treated

GPL570 [HG-
U133_Plus_2] 
U133 Plus 2.0 
Array

1164x1164 
features

54675 Hwang et al. [36]

GSE 15102 8 Colon Homo sapiens Control vs 
treated

GPL571 [HG-
U133A_2] 
Affym-
etrix Human 
Genome 
U133A 2.0 
Array

732x732 fea-
tures

22277 Sagiv et al. [37]

GSE 18560 12 Colorectal Homo sapiens Control vs 
treated

GPL570 [HG-
U133_Plus_2] 
Affym-
etrix Human 
Genome U133 
Plus 2.0 Array

1164x1164 
features

54675 Selga et al. [34]

GSE 27157 10 Colorectal 
cancer

Homo sapiens p53 wild vs. 
tumor sam-
ples

GPL570 [HG-
U133_Plus_2] 
Affym-
etrix Human 
Genome U133 
Plus 2.0 Array

1164x1164 
features

54675 Katkoori et al. 
[38]

GSE 29316 6 Colon fibroblast Homo sapiens Control vs 
treated

GPL570 [HG-
U133_Plus_2] 
Affym-
etrix Human 
Genome U133 
Plus 2.0 Array

1164x1164 
features

54675 Chen et al. [39]

GSE 32323 44 Colorectal 
cancer

Homo sapiens Control vs 
Treated

GPL570 [HG-
U133_Plus_2] 
Affym-
etrix Human 
Genome U133 
Plus 2.0 Array

1164x1164 
features

54675 Khamas et al. [40]

GSE 35144 64 Colorect cancer Homo sapiens Case vs control GPL570 [HG-
U133_Plus_2] 
Affym-
etrix Human 
Genome U133 
Plus 2.0 Array

1164x1164 
features

54675 Uronis et al. [41]

GSE 55624 18 Colorectal 
cancer

Homo sapiens Control vs 
treated

GPL570 [HG-
U133_Plus_2] 
Affym-
etrix Human 
Genome U133 
Plus 2.0 Array

1164x1164 
features

54675 Schoumacher 
et al. [42]
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the progression of CRC is related to the overexpression 
of genes that leads to cell proliferation and anti-apoptosis 
and downregulation of genes that inhibit the prolifera-
tion and cellular differentiation of cells. The association 
of differentially expressed genes with colorectal cancer 
were cross-referenced by TCGA and the Human Protein 
Atlas. The median expression level of interactive gene 

signatures and source DEGs is significant in cases as 
compared to control. The interactive survival scatter plot 
(Fig. 7) indicates the expression of these DEGs is favora-
ble in colorectal cancer. The pathways and pathologi-
cal analysis showed that the proteins level is linked with 
cancer. These interactive survival scatter plots indicated 
the consequence of RNA and protein levels on clinical 

Fig. 1 MA plots of an individual quality array after normalization. M and A is specified as M = log2 (I1) − log2 (I2), A = 1/2
(

log2 (I1) − log2 (I2)
)

 , 
where  I1 is the intensity of the array studied, and  I2 is the intensity of a “pseudo”-array that consists of the median across arrays”. Normally, the mass 
of distribution in the MA plot is expected to be concentrated along the M = 0 axis with no trend in M as a function of A
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Fig. 2 RNA degradation plot of each dataset produced by plot AffyRNAdeg showing 5′ to 3′ trend to evaluate the severity of RNA degradation and 
significance level

Table 2 The differentially expressed CRC-associated genes curated from PubMed

S.NO. Probe ID Gene ID Uniprot_ID PubMed Count Protein name Reference links

1. 202237_at NNMT NNMT_HUMAN 4 NNMT Homo sapiens nicotinamide 
N-methyltransferase

https ://www.ncbi.nlm.nih.gov/
pubme d/?term=%22NNM 
T%22+AND+%22COL ORECT 
AL+CANCE R%22

2. 212077_at CALD1 CALD1_HUMAN 5 Caldesmon 1 https ://www.ncbi.
nlm.nih.gov/pubme 
d/?term=%22+CALD1 
%22+AND+%22COL ORECT 
AL+CANCE R%22

3. 201533_at CTNNB1 CTNB1_HUMAN 506 CTNNB1 Homo sapiens catenin beta 1 https ://www.ncbi.
nlm.nih.gov/pubme 
d/?term=%22+CTNNB 
1%22+AND+%22COL ORECT 
AL+CANCE R%22

4. 222484_s_at CXCL14 CXL14_HUMAN 3 C-X-C motif chemokine ligand 14 https ://www.ncbi.
nlm.nih.gov/pubme 
d/?term=%22+CXCL1 
4+%22+AND+%22COL 
ORECT AL+CANCE R%22

5. 209815_at PTCH1 PTC1_HUMAN 15 Patched 1 https ://www.ncbi.
nlm.nih.gov/pubme 
d/?term=%22+PTCH1 
+%22+AND+%22COL 
ORECT AL+CANCE R%22

6. 202644_s_at TNFAIP3 TNAP3_HUMAN 26 TNF alpha induced protein 3 https ://www.ncbi.nlm.nih.gov/
pubme d/?term=%22+TNFAI 
P3%22+AND+%22COL 
ORECT AL+CANCE R%22

7. 202859_x_at CXCL8 5 C-X-C motif chemokine ligand 8 https ://www.ncbi.
nlm.nih.gov/pubme 
d/?term=%22+CXCL8 
+%22+AND+%22COL 
ORECT AL+CANCE R%22

https://www.ncbi.nlm.nih.gov/pubmed/%3fterm%3d%2522NNMT%2522%2bAND%2b%2522COLORECTAL%2bCANCER%2522
https://www.ncbi.nlm.nih.gov/pubmed/%3fterm%3d%2522NNMT%2522%2bAND%2b%2522COLORECTAL%2bCANCER%2522
https://www.ncbi.nlm.nih.gov/pubmed/%3fterm%3d%2522NNMT%2522%2bAND%2b%2522COLORECTAL%2bCANCER%2522
https://www.ncbi.nlm.nih.gov/pubmed/%3fterm%3d%2522NNMT%2522%2bAND%2b%2522COLORECTAL%2bCANCER%2522
https://www.ncbi.nlm.nih.gov/pubmed/%3fterm%3d%2522%2bCALD1%2522%2bAND%2b%2522COLORECTAL%2bCANCER%2522
https://www.ncbi.nlm.nih.gov/pubmed/%3fterm%3d%2522%2bCALD1%2522%2bAND%2b%2522COLORECTAL%2bCANCER%2522
https://www.ncbi.nlm.nih.gov/pubmed/%3fterm%3d%2522%2bCALD1%2522%2bAND%2b%2522COLORECTAL%2bCANCER%2522
https://www.ncbi.nlm.nih.gov/pubmed/%3fterm%3d%2522%2bCALD1%2522%2bAND%2b%2522COLORECTAL%2bCANCER%2522
https://www.ncbi.nlm.nih.gov/pubmed/%3fterm%3d%2522%2bCALD1%2522%2bAND%2b%2522COLORECTAL%2bCANCER%2522
https://www.ncbi.nlm.nih.gov/pubmed/%3fterm%3d%2522%2bCTNNB1%2522%2bAND%2b%2522COLORECTAL%2bCANCER%2522
https://www.ncbi.nlm.nih.gov/pubmed/%3fterm%3d%2522%2bCTNNB1%2522%2bAND%2b%2522COLORECTAL%2bCANCER%2522
https://www.ncbi.nlm.nih.gov/pubmed/%3fterm%3d%2522%2bCTNNB1%2522%2bAND%2b%2522COLORECTAL%2bCANCER%2522
https://www.ncbi.nlm.nih.gov/pubmed/%3fterm%3d%2522%2bCTNNB1%2522%2bAND%2b%2522COLORECTAL%2bCANCER%2522
https://www.ncbi.nlm.nih.gov/pubmed/%3fterm%3d%2522%2bCTNNB1%2522%2bAND%2b%2522COLORECTAL%2bCANCER%2522
https://www.ncbi.nlm.nih.gov/pubmed/%3fterm%3d%2522%2bCXCL14%2b%2522%2bAND%2b%2522COLORECTAL%2bCANCER%2522
https://www.ncbi.nlm.nih.gov/pubmed/%3fterm%3d%2522%2bCXCL14%2b%2522%2bAND%2b%2522COLORECTAL%2bCANCER%2522
https://www.ncbi.nlm.nih.gov/pubmed/%3fterm%3d%2522%2bCXCL14%2b%2522%2bAND%2b%2522COLORECTAL%2bCANCER%2522
https://www.ncbi.nlm.nih.gov/pubmed/%3fterm%3d%2522%2bCXCL14%2b%2522%2bAND%2b%2522COLORECTAL%2bCANCER%2522
https://www.ncbi.nlm.nih.gov/pubmed/%3fterm%3d%2522%2bCXCL14%2b%2522%2bAND%2b%2522COLORECTAL%2bCANCER%2522
https://www.ncbi.nlm.nih.gov/pubmed/%3fterm%3d%2522%2bPTCH1%2b%2522%2bAND%2b%2522COLORECTAL%2bCANCER%2522
https://www.ncbi.nlm.nih.gov/pubmed/%3fterm%3d%2522%2bPTCH1%2b%2522%2bAND%2b%2522COLORECTAL%2bCANCER%2522
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survival. The results showed that individual tumor gene 
expression patterns differed greatly and could surpass 
the variability between different types of cancer. Lower 
patient survival was usually associated with over-expres-
sion of genes in mitosis and cell growth and down-reg-
ulation of genes involved in cellular differentiation. This 
data enables the generation of metabolic models in a cus-
tomized genome scale for cancer patients to recognize 
important genes of tumor growth.

Discussion
In this study, the DEG for colorectal cancer were iden-
tified and their GO studies were performed to ana-
lyze their functions. The gene network was established 
and the pathways through which these DEGs were 

deregulated were also identified. The study provides a 
new platform for the determination of pathogenesis of 
colorectal cancer.

The differential analysis revealed 7 differentially 
expressed signature genes out of 50 DEGs on the basis 
of physicochemical and functional analysis (p < 0.05) 
that showed involvement in the progression of colorec-
tal cancer. These signature genes are CALD1, CTNNB1, 
CXCL14, PTCH1, CXCL8, TNFAIP3, and NNMT. The 
functional role of these genes in colorectal cancer and 
their dysregulation has been extensively studied [27–30]. 
Out of seven genes, two genes were upregulated while 
the rest showed downregulation. The GO study revealed 
that following functional categories were enriched among 
dysregulated genes; response to molecule of bacterial 

Fig. 3 Cluster analysis of 7 colorectal related DEGs. Blue corresponds to a small distance and Red to a large distance. Lines indicate the boundaries 
of the clusters in the level of the tree
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origin, response to a drug, cellular response to lipopoly-
saccharide, chemotaxis, movement of a cell or subcellu-
lar component and branching involved in ureteric bud 
morphogenesis. These genes showed a link to important 
biological pathways such as, methylation, beta-catenin 
signaling cascade and wnt canonical pathway. The dys-
regulation of these genes can cause Pilomatrixoma, con-
genital lung cyst, and other clinical phenotypes.

The network study showed the functional association 
of possible biomarker candidates with other interacting 
protein targets such as APC, AXIN, MAPK, TRAF, GLI, 
and SHH. The mutation of APC genes has been shown to 
be present in 90% of the patients with human CRC that 
interacts with CTNNB1 in the Wnt pathway. More than 

80 target genes showed a connection with the source 
genes in causing colorectal cancer. The mutation of Kras 
genes also plays a pivotal role in the progression of colo-
rectal cancer during the early adenoma stage. The cross 
talk between the wnt/β-catenin and RAS-ERK pathway 
exist and the interaction between the two pathways dur-
ing the various stages of colorectal cancer the combined 
mutations of which lead to malignant transformation of 
CRC [31]. The interaction between the NNMT and the 
MAP/ERK pathway has also been under investigation 
reporting the cell survival, apoptosis and cell cycle pro-
gression of cancer tissues. The overexpression of NNMT 
has indicated the acceleration of cell proliferation by reg-
ulating the energy metabolism in CRC tissues and by its 

Fig. 4 a Clinical phenotypes analysis of CRC related DEGs. b Biological pathway analysis using FunRich tool
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Fig. 5 A genetic network of a total number of gene signatures associated with CRC differentially expressed seeder genes. Red nodes represent CRC 
seeder genes, blue nodes showing signature genes associated with seeder genes having no role in CRC while pink nodes represent gene signatures 
associated with seeder genes having a role in CRC 

Fig. 6 Pathway modeling. Integrated genome to phenome scale signaling pathways involved in CRC. KEGG pathway was used to map the gene 
signatures for signaling and metabolic reconstruction
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involvement with the P13K/Akt and MAP/ERK pathways 
[27]. The GLi and SHH are part of the hedgehog signaling 
pathway that plays an essential role in the differentiation, 
growth, tissue patterning and cell maintenance of various 
cancers. However, its role in the CRC is still controversial 
[32]. PTCH1 is a tumor suppressor gene and its down-
regulation causes the activation of GLi transcription fac-
tors that activate the hedgehog target genes. CXCL14 is 
another potential tumor inhibiting gene in colorectal 
carcinoma and downregulation of this gene may result 
in a more aggressive phenotype of colorectal cancer [30]. 
Another prognostic biomarker of colorectal cancer is the 
TNFAIP3 which may also act as the tumor suppressor 
gene [33].

The network analysis revealed that these biomarkers 
play an essential role in colorectal cancer and that the 

dysregulation of these genes may lead to the progres-
sion of cancer. Targeting these pathways and the genes 
involved in the signaling of these pathways may help in 
easing the therapeutic profiling of colorectal cancer. The 
CTNNB1 and NNMT are known targets of CRC and 
both genes are known to interact with the MAPK path-
ways in causing CRC. The integrated network-based 
analysis helped in identifying the interaction of these 
potential biomarkers with other target genes through dif-
ferent integrated pathways.

Conclusion
Advancement in the clinical therapy of diseases is still a 
requisite and to improve the diagnostic measures vali-
dated biomarkers can aid in the diagnosis. The micro-
array analysis has helped in several ways to identify the 

Fig. 7 Interactive scatter plot indicates the expression-level of differentially expressed genes in colorectal cancer. These plots showed the 
consequence of RNA and protein levels on clinical survival
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novel targets for targeted based therapies. This study 
reveals the essential biomarkers involved in CRC through 
a system biology approach. Seven essential biomarkers 
of CRC having functional relation with other important 
target proteins such as APC, MAPK and GLi and have 
found a significant association with CRC. The study 
might help in rapid risk assessment of colorectal cancer 
by providing the new insights in clinical practice utilizing 
the microarray gene expression analysis.
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