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Abstract 

Background:  Polysaccharides are the major active ingredients responsible for the bioactivities of Laminaria japonica. 
However, the effects of L. japonica polysaccharides (LJP) on exercise endurance and oxidative stress have never been 
investigated. Therefore, this study was conducted to investigate the effects of LJP on exercise endurance and oxida-
tive stress in a forced swimming mouse model. The animals were divided into four groups, namely the control (C), 
LJP-75, LJP-150, and LJP-300 groups, which received physiological saline and 75, 150, and 300 mg kg−1 LJP, respec-
tively, by gavage once a day for 28 days. This was followed by a forced swimming test and measurements of various 
biochemical parameters.

Results:  LJP increased swimming time to exhaustion, the liver and muscle glycogen content, and levels of superox-
ide dismutase, glutathione peroxidase, and catalase in the serum, liver, and muscle, which were accompanied by cor-
responding decreases in the malondialdehyde (MDA) content of the same tissues. Furthermore, decreases in blood 
lactic acid and serum myeloperoxidase (MPO) levels were observed.

Conclusion:  LJP enhanced exercise endurance and protected mice against exhaustive exercise-induced oxidative 
stress.
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Background
The generation of reactive oxygen species (ROS) is a nec-
essary and unavoidable consequence of aerobic metabo-
lism [1]. The enhanced oxygen consumption during 
exercise leads to an increased flux of oxygen through the 
mitochondria, and 2–5 % of this oxygen is not completely 
reduced to water and, therefore, generates ROS [2]. Under 
normal physiological conditions, cells have adequate 
defenses against ROS production and enough endog-
enous enzymatic and nonenzymatic antioxidant reserves 
[3, 4]. However, during strenuous physical exercise, the 
rate of ROS generation exceeds that of their removal 

and oxidative stress occurs [5]. Consequently, accumu-
lated excessive ROS can attack vital biomolecules such as 
plasma membrane lipids and proteins and, thereby, dete-
riorate normal cellular functions and further contribute 
to muscle damage [6]. Specifically, it has been shown that 
strenuous physical exercise decreases antioxidants lev-
els and increases lipid peroxidation markers in the blood 
and tissues [7]. Therefore, antioxidant supplementation 
may protect against exhaustive exercise-induced oxida-
tive stress by forming less active radicals or quenching 
free radicals and ROS [8]. Many antioxidant bioactive 
compounds, such as polysaccharides from Radix pseu-
dostellariae [Pseudostellaria heterophylla (Miq.) Pax], 
polysaccharides from Auricularia auricula, polysaccha-
rides from Cordyceps sinensis mycelium, polysaccharides 
from Ganoderma lucidum, salidroside, ginsenoside-Rg1, 
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ginsenoside‑Rb1, flavonoid from Citrus limon (L.) Burm. 
F. as well as polyphenols from Vaccinium corymbosum L., 
have been reported for their protective effects on exhaus-
tive exercise-induced oxidative stress [4, 9–16].

The brown seaweed Laminaria japonica, is a common 
seafood consumed in China and numerous other countries 
and has been documented as a drug in traditional Chinese 
medicine (TCM) [17]. In the ancient literature, L. japonica 
has been recorded as an important therapeutic agent for 
phlegm elimination, detumescence, and weight loss for more 
than 1000 years [18]. Over the past decades, L. japonica has 
been the focus of attention of chemists and pharmacolo-
gists because of its abundant functional compound content 
and the associated biological properties. The major active 
constituents of L. japonica are polysaccharides including 
alginate, fucoidan, and laminarin [19]. Recent studies have 
demonstrated that L. japonica polysaccharides (LJP) have a 
wide range of biological properties including anti-apoptosis, 
antivirus, anticoagulant, antitumor, antithrombotic, anti-radi-
ation, hypoglycemic, hypolipidemic, and immunostimulatory 
[20–23]. Furthermore, LJP protected endogenous antioxidant 
enzymes, inhibited lipid peroxidation, and exhibited high 
antioxidant activities including the oxygen radical absorbance 
capacity (ORAC), 2,2ʹ-azino-bis-(3-ethylbenzthiazoline-6-
sulfonic acid) (ABTS) and reduced power tests [24, 25], sug-
gesting that LJP might reduce exhaustive exercise-induced 
oxidative stress. Therefore, the current study aimed to dem-
onstrate the protective effects of LJP against exercise endur-
ance and oxidative stress in a forced swimming mouse model.

Results and discussion
Effects of LJP on swimming time to exhaustion of mice
Exercise endurance is an important parameter for evalu-
ating anti-fatigue treatments, and the forced swimming 
test has been widely used for this purpose with high 
reproducibility [26]. The lengths of the swimming time to 
exhaustion indicate the degree of exercise tolerance and 
fatigue. As shown in Fig. 1, swimming time to exhaustion 
of the LJP-75, LJP-150, and LJP-300 groups were signifi-
cantly longer than that of the control (C) group (p < 0.05) 
with increased rates of 30.58, 45.57, and 51.72 %, respec-
tively. This result indicates that LJP enhanced the exercise 
endurance and had anti-fatigue effects.

Effects of LJP on blood lactic acid levels of mice
The blood lactic acid (BLA) level tends to increase dur-
ing strenuous physical exercise because anaerobic 
metabolism becomes the dominant energy-produc-
ing mechanism. The increased lactic acid level further 
reduces the pH, which could induce various biochemical 
and physiological effects including glycolysis, phospho-
fructokinase, and calcium ion release through muscular 
contraction [27]. Therefore, BLA is an important marker 

for evaluating the degree of fatigue of a living organism. 
As shown in Fig.  2, BLA levels of the LJP-75, LJP-150, 
and LJP-300 groups were significantly lower than that of 
the C group (p < 0.05), and the decrease rates were 25.99, 
35.65, and 52.58 %, respectively. This result indicates that 
LJP effectively inhibited and lowered BLA production 
and, thereby, retarded the occurrence of fatigue.

Effects of LJP on glycogen contents of the liver and muscle 
of mice
Energy for exercise is derived initially from the break-
down of glycogen in muscle which may be depleted dur-
ing strenuous exercise, and at later stages, the energy is 
derived from the liver glycogen [10, 28]. The depletion of 

Fig. 1  Effects of L. japonica polysaccharides on swimming time to 
exhaustion of mice. Data are mean ± standard deviation (SD); n = 12, 
*p < 0.05 compared with control (C) group

Fig. 2  Effects of L. japonica polysaccharides on blood lactic acid 
levels of mice. Data are mean ± standard deviation (SD); n = 12, 
*p < 0.05 compared with control (C) group
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liver glycogen leads to the onset of fatigue [12]. As shown 
in Fig. 3, the glycogen contents of the liver and muscles 
of the LJP-75, LJP-150, and LJP-300 groups were signifi-
cantly higher than that of the C group (p < 0.05). Specifi-
cally, the increased rates in the liver were 34.73, 61.19, 
and 93.76  %, respectively, while in muscle, 15.29, 25.48, 
and 32.48  %, respectively. The results indicate that LJP 
reduced the liver and muscle glycogen consumption by 
improving its reserve or reducing the consumption dur-
ing exercise. Furthermore, the anti-fatigue effects of LJP 
might be related to the improved metabolic control of 
exercise and activation of energy metabolism [29].

Effects of LJP on superoxide dismutase (SOD), glutathione 
peroxidase (GPx), and catalase (CAT) levels of mouse 
serum, liver and muscle
It was previously demonstrated that antioxidant enzymes 
play a significant role in protecting the body against ROS 
[15]. The principal antioxidant enzymes include superox-
ide dismutase (SOD), glutathione peroxidase (GPx), and 
catalase (CAT), and they act to reduce ROS [30]. Regular 
physical exercise has been shown to increase antioxidant 
enzyme activities in the blood and tissues of humans and 
animals [31, 32], which can be attributed to a compen-
satory response to counteract the possible detrimental 
effects associated with oxidative stress [33]. However, 
other studies have reported that strenuous exercise 
causes a dramatic drop in antioxidant enzyme activi-
ties in the blood and tissues [14]. Although inconsistent 
findings have been reported on the level of antioxidant 
enzymes, it appears that the variation of these enzymes 
is dependent not only on the type of tissues measured but 
also on the mode and intensity of exercise [15].

Previous studies have demonstrated that the variation 
in the levels of antioxidant enzymes in different tissues 
might be due to tissue-specific metabolic differences [34]. 
The liver is a critical physiological metabolic organ in 
organisms, involved in almost all of the substance metab-
olism, and contains higher levels of antioxidant enzymes 
than other tissues, which in turn release more ROS with 
increased lipid peroxidation products [35, 36]. Recent 
studies have demonstrated a tissue-specific expression 
of GPx and CAT, with their highest activities occurring 
in the liver [4, 12, 34]. As shown in Fig. 4a, SOD serum 

Fig. 3  Effects of L. japonica polysaccharides on glycogen contents of 
liver and muscle of mice. Data are mean ± standard deviation (SD); 
n = 12, *p < 0.05 compared with control (C) group

Fig. 4  Effects of L. japonica polysaccharides on superoxide dismutase 
(SOD), glutathione peroxidase (GPx), and catalase (CAT) levels of 
mouse serum, liver and muscle. Data are mean ± standard deviation 
(SD); n = 12, *p < 0.05 compared with control (C) group
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and muscle levels of the LJP-75, LJP-150, and LJP-300 
groups were significantly higher than that of the C group 
(p < 0.05) with serum increased rates of 21.73, 49.10, and 
70.81 %, respectively, and muscle increased rates of 24.88, 
42.05, and 54.87  %, respectively. Furthermore, the SOD 
levels in the liver of the LJP-150 and LJP-300 groups were 
significantly higher than that of the C group (p  <  0.05), 
with increased rates of 20.09 and 40.02  %, respec-
tively. Although the liver SOD level of the LJP-75 group 
also increased, no significant difference was observed 
(p > 0.05). As shown in Fig. 4b, the serum GPx levels of 
the LJP-75, LJP-150, and LJP-300 groups were signifi-
cantly higher than that of the C group (p  <  0.05), with 
increased rates of 34.44, 53.44, and 75.82 %, respectively. 
In addition, the liver and muscle GPx levels of the LJP-
150 and LJP-300 groups were significantly higher than 
that of the C group (p  <  0.05). Moreover, the increase 
rates for the LPJ-75 and LPJ-150 groups were 27.29 and 
53.91 %, respectively in the liver, while the muscle rates 
were 30.87 and 55.81 %, respectively. Although the liver 
and muscle GPx levels of the LJP-75 group also increased, 
no significant difference was observed (p  >  0.05). As 
shown in Fig. 4c, the serum, liver, and muscle CAT levels 
of the LJP-75, LJP-150, and LJP-300 groups were signifi-
cantly higher than that of the C group (p < 0.05). Moreo-
ver, the increased ratios in the serum were 25.15, 51.37 
and 64.26  %, respectively; in the liver, 30.35, 58.92, and 
83.04 %, respectively; and in the muscle 28.89, 35.61, and 
70.25 %, respectively. The results indicate that LJP upreg-
ulated the main antioxidant enzyme activity, which might 
protect against exhaustive exercise-induced oxidative 
stress. However, further research needs to be carried out 
to elucidate this hypothesis.

Effects of LJP on malondialdehyde (MDA) content 
of mouse serum, liver and muscle
Strenuous physical exercise increases the production of 
ROS, which consequently attack the membrane lipids 
and results in lipid peroxidation product formation. Sig-
nificant increases in lipid peroxidation products in the 
serum, liver, and muscle after exhaustive exercise have 
been recorded in several studies [37]. Malondialdehyde 
(MDA), one of the final products of polyunsaturated 
fatty acid peroxidation, has been widely investigated in 
exercise studies as a marker of oxidative stress [38]. As 
shown in Fig. 5, the MDA content of the serum, liver, and 
muscle of the LJP-75, LJP-150, and LJP-300 groups were 
significantly lower than that of the C group (p  <  0.05). 
Moreover, the decreased rates in the serum were 17.63, 
29.16, and 34.68 %, respectively; in the liver were 13.39, 
17.23, and 21.54 %, respectively; and in the muscle were 
13.24, 26.95, and 60.09 %, respectively. These results indi-
cate that LJP effectively reduced lipid peroxidation.

Effects of LJP on serum myeloperoxidase (MPO) levels 
of mice
Exercise induces neutrophil priming for oxidative activity 
as evidenced by the increased neutrophil myeloperoxi-
dase (MPO) activity [39]. Accumulating evidence indi-
cates that neutrophil infiltration into tissues is associated 
with exhaustive exercise-induced oxidative damage [40, 
41]. Neutrophils are capable of further generating free 
radicals via the action of nicotinamide adenine dinucleo-
tide phosphate oxidase [42]. In addition, neutrophils pro-
duce hypochlorite from hydrogen peroxide (H2O2) by the 
action of MPO, a marker for neutrophil infiltration into 
tissues, during the induction of exercise-induced oxida-
tive damage [43, 44]. As shown in Fig. 6, the serum MPO 
levels of the LJP-75, LJP-150, and LJP-300 groups were 
significantly lower than that of the C group (p  <  0.05), 
and the decreased rates were 17.69, 34.80, and 40.54 %, 
respectively. These results indicate that LJP played an 
important role in inhibiting oxidative damage after 
exhaustive exercise, and the decreased serum MPO levels 
may be due to an alteration in the intracellular redox sta-
tus of the neutrophils [41].

Conclusions
This study demonstrated that LJP enhanced the exer-
cise endurance of mice by increasing swimming time 
to exhaustion and the glycogen contents of the liver 
and muscle, as well as decreasing BLA levels. Further-
more, LJP exhibited a protective effect against exhaus-
tive exercise-induced oxidative stress by increasing the 

Fig. 5  Effects of L. japonica polysaccharides on malondialde-
hyde (MDA) content of mouse serum, liver and muscle. Data are 
mean ± standard deviation (SD); n = 12, *p < 0.05 compared with 
control (C) group
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serum, liver, and muscle levels of SOD, GPx, and CAT, 
as well as decreasing serum MPO and the MDA con-
tents of the serum, liver, and muscle. The experimental 
data have shed some light on the clinical therapeutic 
potential of LJP against exhaustive exercise-induced 
oxidative stress. However, further study is required to 
ascertain the detailed underlying mechanisms of these 
effects.

Methods
Materials
Laminaria japonica was collected in Zhoushan, Zhe-
jiang, China in September 2013 and the plant material 
was identified by Professor M. J. Wang (College of Life 
Sciences, China Jiliang University, Hangzhou, China). 
The fresh L. japonica samples were immediately washed 
with water, sun-dried, ground into a fine powder using a 
mechanical grinder (FZ102, Taisite Instrument Co., Tian-
jin, China), filtered through a 40-mesh (200-μm) sieve, 
and then the dried powder was stored at room tempera-
ture (20 ± 2 °C) in a desiccator (300 mm, Huaou Indus-
trial Co., Yancheng, China) until further used.

Chemicals and reagents
Purchased commercial diagnostic kits were used for the 
determination of BLA (Leadman Biochemistry Technol-
ogy Co., Ltd., Beijing, China); tissue glycogen, SOD, GPx, 
and CAT (Jiancheng Biotechnology Institute, Nanjing, 
China); MDA (Biosino Bio-technology and Science Inc., 
Beijing, China); and MPO (Jianglai Biochemistry Tech-
nology Co., Ltd., Shanghai, China). All other chemicals 
and reagents were of analytical grade purity, and they 
were purchased from Hangzhou Chemical Reagent Co., 

Ltd. (Hangzhou, China), and were used without further 
purification.

Preparation of LJP
The LJP was prepared according to previously published 
method [21, 45] with minor modifications. Briefly, dried 
powder sample was defatted with anhydrous ethanol at 
60 °C for 3 h with stirring and then mixed with distilled 
water thrice (1:40, w/v) at 90  °C for 2.5 h. The insoluble 
residue was separated from the aqueous extract by cen-
trifugation (10,640×g for 15  min). Then, the combined 
supernatants were concentrated to a quarter of the origi-
nal volume by evaporation and deproteinated using the 
Sevag method [46]. The solution was added to anhydrous 
ethanol to obtain an ethanol concentration of 80 %, kept 
overnight, and then filtered. The resulting precipitate was 
dissolved in water followed by the addition of anhydrous 
ethanol to a final ethanol concentration of 80 % and then 
filtered twice. The precipitate was washed sequentially 
with 95  % ethanol, anhydrous ethanol, and acetone and 
then lyophilized to obtain the final extract of LJP at a 
yield of 21.37  % (w/w) of the original L. japonica plant 
material. The dried LJP was dissolved in saline solution 
just before use.

Experimental animals
Adult male Kunming mice (Mus musculus, Km, with 
weight 20  ±  2  g) were procured from the Experimen-
tal Animal Center of Zhejiang Province. All animals 
were housed under standard environmental conditions 
(temperature 21 ±  2  °C; humidity 45 ±  5  %; and 12-h 
light:dark cycle) with free access to a standard pellet diet 
and water ad libitum. All animal studies were performed 
according to the Guide for the Care and Use of Labora-
tory Animals of the National Institutes of Health (NIH), 
as well as the guidelines of the Animal Welfare Act. The 
experimental protocol was approved (approval num-
ber: ZJSR2014‑0113) by the Institutional Animal Care 
and Use Committee (IACUC) at the Zhejiang Shuren 
University.

Experimental design
The mice were allowed to acclimatize to the laboratory 
environment for 1 week prior to the experiments. Then, 
the animals were assigned randomly to four groups of 12 
mice each namely the C, LJP-75, LJP-150, and LJP-300 
groups, which were treated with the vehicle (physiologi-
cal saline) and 75, 150, and 300 mg kg−1 of LJP, respec-
tively, for 28 days. The LJP was dissolved in 1.5 mL of the 
vehicle, and the C group received the same volume of the 
vehicle as well. The treatments were administered orally 
by gavage once a day according to the pretest and dose 
determined during the active screening.

Fig. 6  Effects of L. japonica polysaccharides on serum myeloperoxi-
dase (MPO) levels of mice. Data are mean ± standard deviation (SD); 
n = 12, *p < 0.05 compared with control (C) group
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After the final LJP or vehicle treatment, the mice were 
allowed to rest for 30 min, and then they were subjected 
to the forced swimming test using the method described 
by Li et al. [11]. The apparatus used was an acrylic plas-
tic pool (60, 50, and 50 cm in length, width, and height, 
respectively) filled with fresh water, which was main-
tained at 25 ±  0.5  °C at a depth of 40  cm. Each mouse 
was weighted using a lead wire bundle attached to the tail 
at 5 % of the body weight. Exhaustion was determined by 
observing the loss of coordinated movements and failure 
to return to the surface within 10 s.

Biochemical analyses
Following the forced swimming test, the mice were 
anaesthetized with absolute ether and the success of the 
anaesthesia was confirmed by verifying the absence of 
reflex responses to noxious stimuli. Then, the mice were 
euthanized by decapitation, blood samples were collected 
for BLA analysis, and serum was obtained by centrifu-
gation (2000×g, 4  °C, 10  min) for the SOD, GPx, CAT, 
MPO, and MDA analyses. After blood collection, the 
liver and gastrocnemius muscle tissues were quickly dis-
sected, washed in ice-cold physiological saline, frozen 
in liquid nitrogen, and stored at −70 °C for the assays of 
glycogen, SOD, GPx, CAT, and MDA. The measurements 
were performed according to the recommended proce-
dures provided by the commercial diagnostic kits.

Statistical analysis
The data obtained were expressed as mean ±  standard 
deviation (SD). The results were analyzed using a one-
way analysis of variance (ANOVA) followed by a post hoc 
Tukey’s test using the statistical package for the social 
sciences (SPSS) software (version 15.0, SPSS Inc., Chi-
cago, IL, USA). Values were considered significant when 
p < 0.05.
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