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Abstract 

Background:  Reliable prediction of protein–protein interaction sites is an important goal in the field of bioinformat-
ics. Many computational methods have been explored for the large-scale prediction of protein–protein interaction 
sites based on various data types, including protein sequence, structural and genomic data. Although much progress 
has been achieved in recent years, the problem has not yet been satisfactorily solved.

Results:  In this work, we presented an efficient approach that uses ensemble learning algorithm with weighted 
feature descriptor (EL-WFD) to predict protein–protein interaction sites. Moreover, weighted feature descriptor was 
designed to describe the distance influence of neighboring residues on interaction sites. The results on two dataset 
(Hetero and Homo), show that the proposed method yields a satisfactory accuracy with 83.8 % recall and 96.3 % 
precision on the Hetero dataset and 84.2 % recall and 96.3 % precision on the Homo dataset, respectively. In both 
datasets, our method tend to obtain high Mathews correlation coefficient compared with state-of-the-art technique 
random forest method.

Conclusions:  The experimental results show that the EL-WFD method is quite effective in predicting protein–protein 
interaction sites. The novel weighted feature descriptor was proved to be promising in discovering interaction sites. 
Overall, the proposed method can be considered as a new powerful tool for predicting protein–protein interaction 
sites with excellence performance.

© 2016 Du et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Protein–protein interactions (PPIs) are central to all 
aspects of biological systems including, for example, 
gene regulation, immunological recognition and pro-
tein synthesis [1, 2]. Exploiting the mechanisms of pro-
tein interactions plays a pivotal role for understanding 
the functions of biological systems. Hence, identification 
of binding sites between two interacting proteins is one 
of basic problems in the research of protein functions. 
Knowledge of the three-dimensional (3D) structure of 
the protein complex provides much valuable informa-
tion on the protein interaction site. Several experimental 

technologies such as X-ray crystallography and NMR 
can be used to obtain such information. However, they 
cannot meet the requirements of proteomics-generated 
interaction data since they are time consuming and 
expensive. Therefore, reliable and efficient computational 
methods are required to assist the identification of pro-
tein–protein interaction sites.

A number of computational methods have been pro-
posed for the prediction of interaction sites in proteins 
based on the sequence information [3, 4], 3D structure 
information [5] or a combination of 3D structure and 
sequence information. Machine learning methods such 
as support vector machine (SVM) [6–8], neural networks 
(NN) [9–12], Bayesian networks (BN) [13–16], random 
forests (RF) [17, 18], conditional random fields (CRF) 
[19], extreme learning machine (ELM) [20] and L1-logreg 
classifier [21] have been successful applied for predict-
ing binding sites. Therefore, development of a machine 
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learning based model using protein properties might be a 
promising strategy to predict unknown PPI sites.

In this study, we present a novel method for PPI sites 
discovery and prediction that uses weighted feature 
descriptor derived from protein sequence with ensemble 
learning algorithm. Firstly, we systematically investigated 
a wide variety of features from a combination of protein 
sequence and structure information, and then weighted 
feature descriptor (WFD) was used to encode the PPI 
sites. Secondly, meta-algorithm was chosen as the ensem-
ble learning method to identify PPI sites. Finally, a new 
ensemble classifier, namely EL-WFD, was developed to 
further improve the prediction accuracy. To demonstrate 
its effectiveness, the proposed method was applied to both 
the Hetero and Homo datasets. Empirical studies showed 
the efficiency and effectiveness of our proposed approach.

Results and discussion
Comparing the prediction performance with/without WFD 
on the TRS
Four models were generated with/without WFD on the 
TRS, namely WFD-Hetero, noWFD-Hetero, WFD-
Homo and noWFD-Homo, respectively. Then, fivefolds 
cross validation was used to evaluate the performance of 
different methods on the TRS. Table  1 shows the detail 
results of four methods. From Table  1, we can deduce 
that the average performance of WFD-Hetero is higher 
about 0.7 % in Accuracy, 0.4 % in Recall, 1.6 % in Preci-
sion than the noWFD-Hetero, respectively. The average 
performance of WFD-Homo is higher about 0.26  % in 
Accuracy and 0.9 % in Precision than the noWFD-Homo, 
respectively.

Comparison with the other methods on the TES
In this study, we compared EL-WFD to J48 algorithm 
and RF using the same set. The results are shown in 
Table  2. The overall performance (Accuracy, Recall, 
Precision, F-measure and MCC) of our method were 
93.11, 83.83, 96.3, 89.63  % and 0.8497 on the Hetero 
dataset. The success rate of J48 and RF was 88.29 and 
76.15  % on the Hetero dataset. On the Homo data-
set, the success rate of EL-WFD was 93.99  %. Hence, 
the success rate was improved by at least 6  %, while 
the overall Recall, Precision, F-measure and MCC 
were improved by at least about 1, 12, 6 and 10  % 
respectively.

ROC curves (Fig. 1) are also plotted to compare these 
three methods objectively on the Homo TES. From 
Fig.  1, it is found that Bagging is higher than the other 
methods on Homo test dataset. Figure 2 shows the same 
result with Fig. 1.

Conclusions
In this paper, we have developed a new approach for 
PPI sites prediction, which combine ensemble learning 
method and weighted feature descriptor (EL-WFD). EL 
offers significant advantages such as fast learning speed, 
ease of implementation, better generalization perfor-
mance, and least human intervention. WFD is an effec-
tive feature representation method, which can uncover 
distance influence of neighboring residues on interacting 
sites. Experimental results show that our method per-
formed significantly well in distinguishing interacting 
and non-interacting sites. In both datasets, our method 
tend to obtain high Mathews correlation coefficient 
(MCC) compared with state-of-the-art technique ran-
dom forest method. In the future, we will focus on how to 
predict hot spots in protein interfaces.

Methods
Generation of the datasets
We evaluated the proposed method with the same data-
set used in the study of Koike et  al. [22]. The PPI sites 
dataset was collected from the Protein Data Bank (PDB). 
The protein pairs which contain a protein with few than 
100 residues, or have more than 25 % sequence identity 

Table 1  The performance of  four methods on  the Hetero/
Homo TRS

Acc Accuracy, Pre Precision, Rec Recall

Method Acc Pre Rec

noWFD-hetero 92.52 95.1 83.3

WFD-hetero 93.2 96.7 83.7

noWFD-homo 92.92 95.3 82.8

WFD-homo 93.18 96.2 82.8

Table 2  The performance comparison using different machine learning methods

Acc Accuracy, Rec Recall, Pre Precision, F F-measure, MCC Mathews correlation coefficient

Dataset Classifier Acc Rec Pre F MCC

Hetero J48 88.29 83.29 83.69 83.49 0.7441

RF 76.15 43.25 80.7 56.32 0.4576

EL-WFD 93.11 83.83 96.3 89.63 0.8497

Homo J48 87.97 81.51 80.62 81.06 0.7224

RF 79.46 82.42 44.46 57.76 0.4956

EL-WFD 93.99 84.19 96.34 89.86 0.8601
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were removed. In addition, the number of protein–pro-
tein interaction sites less than 20 interfacial residues and 
30 interfacial residues for heterocomplex and homo-
complexes respectively, or no HSSP entry available [23]
are removed. The remaining 559 non-redundant chains, 
where 270 are from hetero complexes and the other 289 
are from homo complexes, comprise the final dataset. 
We randomly select 202 chains of all chains as Train Set 
(TRS) and 87 chains as Test Set (TES) from Homo data-
set. We also select 189 chains of all chains as TRS and 81 
chains as TES from Hetero dataset.

Definition of protein interaction sites
Interfaces are formed mostly by residues that are exposed 
to the solvent if the partner chain is removed, so we 
focus on surface residues for later prediction. A residue 
is considered to be a surface residue if at least 16 % of the 

solvent accessible surface area (ASA) was exposed to sol-
vent [24]. The ASA of each residue in the unbound mol-
ecule (MASA) and in the complex (CASA) is computed 
using the DSSP program [25]. Meanwhile, a surface resi-
due is defined to be an interface residue if it formed an 
interfacial contact (|MASA-CASA| >=1).

Feature extraction for residues
To use machine learning methods to predict PPI sites, 
one of the most important computational challenges 
is to extract the biological characteristics in which the 
important information content of amino acid residues is 
fully encoded. In this study, we extracted feature vectors 
based residue structure, sequence, and physicochemical 
information.

Structure based features
1.	 Accessible surface area: The accessible surface area 

(ASA) is the atomic surface area exposed to a solvent. 
The ASA value of each residue calculated by DSSP 
was used in our work. In addition, protein structure 
and interaction analyzer (PSAIA) calculates the ASA 
value for each residue, including backbone ASA, 
side-chain ASA, polar ASA and non-polar ASA.

2.	 Relative accessible surface area: Relative accessible 
surface area (RASA) extracted in this work was cal-
culated by PSAIA [26]. The following residue attrib-
utes are calculated by PSAIA: total RASA, backbone 
RASA, side-chain RASA, polar RASA and non-polar 
RASA.

3.	 Depth index: The residue depth is defined as the min-
imum distance of a residue from any solvent accessi-
ble residue and it has been computed by PSAIA. For 
residue depth, there are six features were calculated 
by PSAIA. In this paper, the average depth index 
(DPX) is used.

4.	 Protrusion index: The protrusion of a non-hydrogen 
residue is the ration of the volume of a sphere with 
a radius of 10.0  Å centered at that atom that is not 
filled with atoms. Same with the DPX, PSAIA calcu-
lates six features for the protrusion and the average 
protrusion index (CX) is adopted.

Sequence based features
1.	 Properties from HSSP file: The sequence profile in 

HSSP file for each protein chain are composed of L 
rows and 20 columns. ‘L’ stands for the number of 
amino acids in a chain and 20 kinds of amino acids 
index columns. Pi,j means the probability of j-th 
amino acid take the place of the i-th residue. We also 
extracted the other four properties of protein from 
HSSP [27] database: entropy, relative entropy, con-

Fig. 1  ROC curves on the homo TES

Fig. 2  ROC curves on the hetero TES
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servation weight and sequence variability. Entropy 
measures the conservation of a residue in the loca-
tion. Relative Entropy is defined as the standardized 
entropy which normalized to the scale of 0–100. 
Conservation Weight measures the sequence con-
servation of a position. Sequence variability contains 
evolutionary information, on a scale of 0–100 as 
exported from NAGLIN alignments.

Physicochemical features
1.	 High-quality-indices: Saha et  al. [28] have made a 

conclusion that physicochemical features of amino 
acids play a significant role in identifying the PPI 
sites, thus properties of amino acids are taken into 
count as important characteristics in discriminat-
ing between interacting sites and non-interacting 
sites. Recently, 544 physicochemical and biochemi-
cal properties of amino acids are released in AAIn-
dex1 database. Based on the statistical analyses, 
Saha et  al. [28] categorized these 544 characteris-
tics into eight classes, named high-quality-indices 
(HQIs). In this work, the HQI8 containing eight 
clusters named electric properties (BLAM930101), 
hydrophobicity (BIOV880101), alpha and turn 
propensities (MAXF760101), physicochemi-
cal properties (TSAJ990101), residue propensity 
(NAKH920108), composition (CEDJ970104), beta 
propensity (LIFS790101) and intrinsic propensities 
(MIYS990104), respectively. Each cluster is com-
posed of one value and there are eight indices for 
each amino acid.

2.	 Amino acid factors: Based on AAindex1, Atch-
ley et  al. [29] made statistical analyses on these 544 
properties, as well. Different from HQI, they summa-
rized these properties into five patterns, which reflect 
polarity, secondary structure, molecular volume, 
codon diversity and electrostatic charge. These fea-
tures were also used to evaluate protein interaction 
sites.

The WFD of the residue
The environment factors for each residue position are 
very important for PPI sites, so the profiles of sequentially 
neighboring residues or spatially neighboring residues 
were adopted as residue features in PPI site prediction 
in previous report [20]. However, distance effect among 
these sequentially neighboring residues or spatially 
neighboring residues was not considered. In other words, 
as the distance between the query residue and its neigh-
boring residue increases, the neighboring residue will 
have smaller effect on the query residue, and vice versa. 
Therefore, we propose a novel WFD which considers the 

distance effect among the query residue and its neigh-
boring residue. To illustrate the WFD, for example, given 
the protein sequence segment SLDIQSAA and Q is the 
interaction site (query residue). In this case, the sliding 
window is fixed to five and sequentially neighboring is 
considered. Thus, the feature vector components were 
arranged in ascending order according to the distance 
between the neighboring residues, which can be defined 
as follows,

 (V = VD,VI ,VQ,VS ,VA),
where Vresidue = (HSSP,PSAIA,HIQ,AAFactors), residue 

= D, I ,Q, S,A.

Second, we calculate the distance effect according to Cα

-atom coordinate of D, I, Q, S and A. Here, the Euclidean 
distance is used to evaluate the distance effect among the 
residue, which can be calculated as,

where xD denotes the x coordinate of Cα-atom, yD denotes 
the y coordinate of Cα-atom, and zD denotes the z coordi-
nate of Cα-atom of residue D, respectively. The rest sym-
bols have similar meanings as those used for residue D.

Finally, the WFD can be written as,

The feature space
For each residue, 50 features were extracted including 
25 features from HSSP profile, 12 features from struc-
ture information (5 features from ASA, 5 features from 
RASA, 1 feature from DPX, 1 feature from CX), and 13 
features from physicochemical information (8 features 
from HQI8 and 5 features from amino acid factors). In 
addition, taking into consideration the effect of neigh-
bor residues, 11-size sliding window is used to describe 
current residue. Therefore, 50×11 =  550 features were 
extracted for each residue.

EDD,Q =
√

(xD − xQ)2 + (yD − yQ)2 + (zD − zQ)2

EDI,Q =
√

(xI − xQ)2 + (yI − yQ)2 + (zI − zQ)2

EDQ,Q = 1

EDS,Q =
√

(xS − xQ)2 + (yS − yQ)2 + (zS − zQ)2

EDA,Q =
√

(xA − xQ)2 + (yA − yQ)2 + (zA − zQ)2
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Ensemble meta‑algorithm
In this paper, bagging algorithm is used to implement 
ensemble meta-algorithm which improves the stabil-
ity and accuracy of machine learning algorithms used in 
statistical classification and regression. It also reduces 
variance and avoids over-fitting. Although it is usually 
applied to decision tree methods, it can be used with any 
type of method.

Suppose a standard training set D of size n, bagging will 
produce m new training sets Di with size n′, by sampling 
from D uniformly and with replacement. By sampling 
with replacement, some observations may be repeated in 
each Di. If n′ = n, then for large n the set Di is expected to 
have the fraction (1−1/e) (≈63.2 %) of the unique exam-
ples of D, the rest being duplicates. This kind of sample 
is known as a bootstrap sample. The m models are fitted 
using the above m bootstrap samples and combined by 
voting for classification.

Performance evaluation
PPI sites prediction is a binary classification problem. In 
this experiment, precision (Pre), recall (Rec), accuracy 
(Acc), F-measure (F), and Matthews correlation coeffi-
cient (MCC) were employed to measure the performance 
of classifiers:

where true positive (TP) denotes the number of true 
interaction site, true negative (TN) denotes the number 
of true non-interaction site, FP (False Positive) denotes 
the number of false interaction site, and false negative 
(FN) denotes the number of false non-interaction site. 
The ROC curve is often used to evaluate classifier per-
formance. A classifier conducts predictions on the basis 
of a threshold, which generally is defined as 0.5. When 
the threshold value is changed, new predictions can be 
obtained and a point can be plotted with the true positive 
rate (TPR) versus the false positive rate (FPR) for differ-
ent threshold values.

(1)Rec =
TP

TP + FN

(2)Pr e =
TP

TP + FP

(3)Acc =
TP + TN

TP + TN + FN + FP

(4)F =
2× Pr e × Rec

Pr e + Rec

(5)

MCC =
TP × TN − FP × FN

√
(TP + FP)× (TP + FN )× (TN + FP)× (TN + FN )

The area under a curve (AUC) for the receiver operat-
ing characteristic (ROC) curve is also used. When the 
AUC value of a predictor is larger than the area of other 
ROC curves, such a predictor is considered better than 
other predictors.
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