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Abstract 

Background:  Comprehensively detailed information on population dynamics for benthic species is crucial since 
potential admixture of individuals could shift the genetic subdivision and age structure during a full breeding period. 
The apparent genetic impact of the potential recruitment strategy of Norway lobster Nephrops norvegicus is still under 
research. For this reason the present study was focused on genetic variation of the species over a given continuous 
year period in a semi-enclosed gulf of the Aegean Sea.

Results:  Analyses revealed that the relative smaller size class in females and the apparent faster growth of males may 
represent a key-role differential strategy for the two sexes, whereas females tend to mature slower. Heterozygosity 
fitness correlations (HFCs) showed substantially significant associations suggesting that inbreeding depression for 
females and outbreeding depression for males are the proximate fitness mechanisms, respectively.

Conclusions:  Nephrops norvegicus uniformal genetic composition (background of high gene flow), could be attrib-
uted to potential population recolonization, due to a hypothesized passive larval movement from deeper waters, 
which may suggest that some offspring of local residents and potential male non-breeders from other regions admix-
ture randomly.

Keywords:  Microsatellites, Carapace length, Nephrops norvegicus, Generation interval, Heterozygosity fitness 
correlation, Inbreeding
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Background
Lobsters are a quite expensive, nevertheless, valuable 
type of tasty seafood as they are considered as a “deli-
catessen” around the world. Global landings of lobsters 
for 2013 exceeded 230,000  mt, of which approximately 
60,000 mt corresponded to Norway lobster, Nephrops 
norvegicus [1]. Pagasitikos gulf, eastern Mediterranean, 
is documented to be one N. norvegicus high popula-
tion abundance site [2]. Fishing activity in Pagasitikos 
gulf is confined to small scale fisheries, since trawling is 
restricted, whilst there is a three-month period of creel 
ban during summer [3]. Indeed, this effective limitation 

of the fishing activity applied for over a decade, enhanced 
juvenile survival, protected stocks from overexploitation 
and increased yields in fishing grounds. Although overall 
landings of Norway lobster in Hellenic Seas, over the past 
20  years were reduced by > 69% (from 1600 mt at 1989 
to 490 mt at 2009) [1], fishing pressure on this species 
remains heavy and the species appears to be withstand-
ing overexploitation [4].

Nephrops norvegicus is a marine benthic decapod crus-
tacean (Family Nephropidae) with a wide geographical 
and bathymetric distribution (captured even at 400 m in 
northern Aegean Sea fishing grounds). It is considered as 
highly commercial important species resulting in a recent 
interest as a new candidate species for aquaculture [3, 
5, 6]. A high larval dispersal ability, although dependent 
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on sea currents, such as many marine organisms [7], has 
been recorded also for N. norvegicus [8].

Knowledge of its population dynamic pattern (a back-
ground of quite high gene flow was previously recorded 
[9, 10]) will elucidate how genetic variation is partitioned 
among populations, thus, having important implications 
not only in Norway lobster’s evolutionary biology and 
ecology, but also in implementing conservation biol-
ogy strategies. However, the current understanding on 
N. norvegicus ecology and evolution was focused so far 
on classical ecological [2, 11–13] and reproductive [3] 
approaches with, nevertheless, valuable information on 
the molecular level [9, 14–17]. Multiple evolutionary 
processes can affect the temporal and spatial variability 
of allelic frequencies in natural populations (e.g. [18]); 
such are migration, mutation, selection and genetic drift. 
Although marine species have the potential of migrating 
through long distances, genetic markers could reveal the 
presence of small, or large scale genetic structure (e.g. 
[19]). Since Norway lobster exhibits a burrowing life-
style as an adult, the recorded lack of significant genetic 
differentiation could be mostly attributed to population 
mixing during larval pelagic phase. Indeed, N. norvegi-
cus larval stage exceeds 50 days in plankton, before ben-
thic settlement occurs. Juveniles appear to preferentially 
take up residence in vacated adult burrows, otherwise 
constructing their own burrows as an extension of the 
already existing ones [20]. Notwithstanding, larvae are 
able to migrate 100–300 km depending on local oceano-
graphic characteristics and water mass transportations 
[21]. Interestingly, low genetic variation was recorded 
through the species distribution, mainly due to genetic 
drift [22]. However, human activities could potentially 
modify the environment of larvae dispersal such as sound 
and light pollution, shipping and most notably pollution 
crisis (e.g. oil spills).

It has been documented that during the protracted 
brooding periods and the periods of extended release of 
eggs, alteration of age and sex ratios in Norway lobster 
is possible [3]. Thus, such periods may influence popu-
lation dynamics, in the sense of genetic differentiation, 
or even in subsequent recruitment of the species. On 
the other hand, this potential admixture of individu-
als could shift temporally the genetic subdivision and 
size structure during a full breeding period. However, 
the apparent genetic impact of the potential recruit-
ment strategy is still under investigation. Consequently, 
by measuring the genetic diversity, it may be possible 
to assess the mechanism that generates a potential cor-
relation between heterozygosity and life-history traits 
of body size of the species. The morphology of Norway 
lobster has already been thoroughly described [3] and it 
is well documented that growth play an important role 

to life-history success of the species in terms of repro-
duction. Published data have shown that heterozygosity 
is often correlated with indirect fitness measurements 
such as fluctuating asymmetry [23–26] and length 
measurements [27, 28]. According to the theory, low 
heterozygous individual have a relative reduced fit-
ness, possibly due to inbreeding depression. Many ear-
lier studies used microsatellite DNA markers, and due 
to the nature of these markers, they are not considered 
to represent genome-wide variability [29]. However, 
most important is not the panel of the markers used, 
but the level of identity disequilibrium in the studied 
populations [30]. On the other hand, more recent stud-
ies demonstrated the greater power availed by genome 
sampling (High-throughput sequencing, e.g. [31]), 
revealing new insights in genetic variability, which is 
however subjected to costs and high performance com-
puting analyses.

To test this hypothesis, the present study was focused 
on assessing genetic variation in N. norvegicus over a 
continuous year period. Also, the generation interval 
of the given year was calculated in order to assess the 
age overlap of the species in Pagasitikos gulf. For this 
reason microsatellite markers were used as a molecu-
lar genetic tool and proved to be a comprehensively 
informative approach in the study area. Morphomet-
ric data were combined with the allele frequencies of 
N. norvegicus at a temporal scale in order to assess the 
generation interval separately for the two sexes. More-
over, heterozygosity-fitness correlations were tested 
regarding levels of genetic diversity and carapace length 
variability.

Methods
Sampling
A sampling scheme was designed in order to survey 
temporal variation of Norway lobster species during a 
full breeding period. Sampling of male and female indi-
viduals of Nephrops norvegicus was carried out during 
a given continuous year (2007) near the deepest area of 
Pagasitikos gulf (39°16′N; 23°02′Ε) (Fig.  1). It is worth 
mentioning that Pagasitikos gulf was selected because it 
is considered a sampling area of high N. norvegicus abun-
dance throughout the Aegean Sea [13]. A total number 
of 764 specimens were collected through experimental 
trawling from a registered fishing ground approximately 
in the middle of a given month (subject to availabil-
ity) (Additional file  1: Table  S1). Following individual 
weighting and measuring, white muscle was dissected 
and stored at − 20 °C. Carapace length was measured on 
each specimen; measurements were taken to the nearest 
0.1 mm.
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DNA extraction and amplification strategies
DNA was extracted from 50  mg of white muscle tissue 
from each individual using the standard phenol–chloro-
form protocol [32]. DNA pellet was finally diluted in 50 
μL TE (10  mM Tris–HCl, 1  mM EDTA, pH 8.00) and 
stored at − 20  °C, for downstream PCR. Quantity and 
quality of template DNA were confirmed by measuring 
absorbance at 260  nm and 260/280 ratio, respectively, 
using a Nanodrop 1000 spectrophotometer (Thermo 
Fisher Scientific, Wilmington, USA).

Six microsatellite loci, specific to Nephropidae fam-
ily [14, 33], were tested based on their recorded poly-
morphism in order to produce scorable amplification 
patterns (Table  1). Amplification reactions were carried 
out in a 20 μL volume using 10 ng of extracted genomic 
DNA, 2  mL reaction buffer (10×), 0.25  mM of each 
dNTP, 3 mM MgCl2, 15 μM of each primer, 1 U Taq poly-
merase (KAPABIOSYSTEMS, Massachusetts, USA), and 
ddH2O, up to the final volume. For all reactions, cycling 
conditions were 94  °C for 30  s, 57  °C for 30  s, followed 
by 72  °C for 30  s. Microsatellites were amplified with 
fluorescently labeled forward primers and PCR products 
were run with the internal ladder Genescan-500 LIZ Size 
Standard (Applied Biosystems, Foster City, CA, USA) in 
an ABI3700 Automated Sequencer (Applied Biosystems, 
Foster City, CA, USA). Genotypic data were analyzed 
using the STRAND 2.3.0.48 software package [34].

Data analysis
All loci were tested for the presence of null alleles, or 
allelic dropout using the software MICROCHECKER 
v.2.2.3 [35]. The software Bayescan v.1.0 [36] was used 
to identify candidate loci under natural selection. Exact 
tests for Hardy–Weinberg equilibrium and Linkage Dis-
equilibrium (using Fisher’s exact tests) were carried out 
using the software Genepop v.1.2 [37]. FIS index [38], 
number of alleles, allelic richness and gene diversity 

Fig. 1  Study area of Pagasitikos gulf and sampling site (black dot) of 
the experimental trawling (after [2])

Table 1  Gene diversity (G), number of alleles (No), allelic richness (R), inbreeding coefficient index (FIS) per locus and sex 
for N. norvegicus 

Mean values of MLH, IR and HL for both sexes along with confidence intervals (CI) values of t test; significances are in italics

Loci Females Males

G No R FIS G No R FIS

Nnmic2-E4 0.898 15 14.158 0.157 0.898 10 9.976 − 0.054

Nnmic1-F2 0.955 23 22.168 0.122 0.941 21 20.232 0.024

Nnmic1B11 0.830 8 7.834 0.153 0.825 10 9.644 0.247

Nnmic1-C12 0.716 9 8.129 − 0.084 0.676 7 6.765 − 0.438

NnmicT-G2 0.958 24 23.068 0.125 0.941 23 21.845 − 0.033

Lobp3 0.797 11 10.620 0.186 0.783 11 10.485 0.034

Total 0.859 15 12.559 0.109 0.844 13.66 13.157 − 0.041

Females Males

MLH IR HL MLH IR HL

0.528 ± 0.23 0.471 ± 0.23 0.467 ± 0.23 0.533 ± 0.15 0.456 ± 0.156 0.464 ± 0.16

CI 95% t-value DF p-value

MLH 0.0057 (− 0.0638; 0.0752) 0.16 88 0.872

IR − 0.0057 (− 0.0754; 0.0640) − 0.16 88 0.872

HL − 0.0029 (− 0.0745; 0.0688) − 0.08 85 0.937
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per locus and per sex were calculated using the FSTAT 
v.2.9.3.2 software [39].

Species generation interval was assessed with the Age-
Structure software [40] based on genotype parentage 
assignment. Length Frequency Distributions (LFD) were 
calculated separately for male and female individuals per 
month using carapace length. Class interval was calcu-
lated as 3.72  mm when using the formula described by 
Sokal and Rohlf [41]. All LFD analyses were carried out 
in SPSS 14.0 (SPPS Inc., Chicago, USA).

Mean multilocus heterozygosity (MLH) and inbreeding 
measures (Internal Relatedness-IR and Homozygosity by 
Locus-HL) were performed using the software IRmacroN 
v.4.0, an EXCEL macro written in Visual Basic [42]. Lin-
ear regressions were used to investigate possible relation-
ships between measures of genetic diversity and carapace 
length for both sexes using Minitab v.17.0 (Minitab Ltd., 
Coventry, UK).

Results
Factorial Correspondence Analysis (FCA) reveal a single 
population (Additional file  1: Fig. S1), thus individuals 
were treated as such. Significant departures from Hardy–
Weinberg equilibrium occurred at random loci and Link-
age Disequilibrium was found at multiple loci pairs. On 
the other hand, no evidence of selection was detected 
across all six loci. Female individuals favored significant 
evidence of high inbreeding index (overall FIS = 0.109, 
p < 0.05), while in male individuals this was not the case 
(overall FIS = − 0.041; p > 0.05). The number of alleles 
ranged from 9 (Nnmic1-C12) to 24 (NnmicT-G2) with 
a mean value of MLH at 0.528 and 0.533 for female and 
male individuals, respectively. Summary statistics on 
genetic variability are presented in Table 1.

Mean Generation interval was calculated at 5.41 years 
(CI 95% 5.25–5.71), which is considered rather informa-
tive (Table  2), since previous ecological data remain 
unclear on age clustering of the species [6]. Generation 
interval for female and male individuals was calculated at 
6.28 and 5.89, respectively. Each individual was assigned 
accordingly to each carapace length class (see review in 
[43]) as shown in Fig.  2. Female lobsters attain sexual 

maturity at approximately 2.5–3  years of age at a cara-
pace length of 21–22  mm. Males become mature after 
3 years at a carapace length of 25 mm [44]. The present 
dataset recorded a female size at the onset of maturity at 
28.1 mm [3], a fact which is consistent with the proposed 
generation interval calculation. Monthly pairwise differ-
entiation of mean carapace length per sex was significant 
for all comparisons (Chi square analysis), except for Janu-
ary and October (Fig. 3).

MLH and inbreeding measures (IR, HL) did not dif-
fer significantly between male and female individuals 
(Table 1). On the contrary, HFC analysis showed significant 
associations for all three different measures of heterozygo-
sity against the carapace length for both male and female 
individuals (Fig. 4). Interestingly, male individuals showed 
significant negative correlation with respect to MLH, IR 
and HL, suggesting outbreeding depression. The correla-
tions in male individuals was strongly negative regarding 
the carapace length measure (Table 3) and remained highly 
significant even after Bonferroni correction (rMLH

2 = 0.352, 
p < 0.001; rIR

2 = 0.352, p < 0.05; rHL
2 = 0.306, p < 0.001). On 

the other hand, female individuals showed relatively low, 
but significantly positive association (rMLH

2 = 0.047, p = 0.03; 
rIR

2 = 0.047, p = 0.03; rHL
2 = 0.052, p = 0.023) with carapace 

length (Table 3), implying that inbreeding depression, this 
time, is the main fitness mechanism.

Discussion
This study represents one of the first attempts dealing 
with the ecological aspects of mixed gene pools in the 
marine environment, regarding different reproductive 
strategies with respect to sex. Male and female Norway 
lobsters, surprisingly, favored different evolutionary 
mechanisms suggesting that even relatively high migra-
tion movements (i.e. outbreeding), or high inbreeding 
could adapt robustly in terms of fitness. Previous genetic 
studies in Nephrops norvegicus demonstrated a low but 
significant genetic heterogeneity [9, 16] through the spe-
cies distribution. However, an unclear geographical pat-
tern among lobster populations has been recorded; an 
IBD model of geographical and genetic distances was 
not valid [9]. These findings have been discussed under 
a background of high gene flow, thus temporal sampling 
over differential generations was of great interest among 
N. norvegicus populations, in order not only to test if 
the observed genetic pattern remains stable over time, 
but also in order to clarify the model of genetic and size 
classes structuring.

In both sexes we observed significant but different 
HFC regression slopes according to carapace length. In 
males, the associations of different levels of heterozy-
gosity with the fitness related trait were negative, sug-
gesting that outbreeding depression is likely to be the 

Table 2  Estimates of  generation effective size (Ne) 
and  generation interval (GI) for  N. norvegicus sampled 
individuals

Ne GI paternal GI maternal Overall GI

Estimate 1902 5.89 6.28 5.41

CI 95% low 1749 5.89 6.08 5.25

CI 95% upper 2444 5.97 6.69 5.71
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Fig. 2  Frequencies of Carapace Length (CL) distribution in each size class per month, separately for female (white bars) and male (black bars) 
individuals
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substantial conservation scenario due to an apparent 
movement of lobsters. The latter suggests that, highly 
heterozygous male individuals grew less and suffered 
much greater loss of fitness. The mechanism that under-
lies this observed pattern may be local adaptation; off-
spring of genetically distant mates may be less adapted 
to the environment than their parents [45]. In relatively 
small sized populations of several other species, local 
adaptation is often attributed to impose a strong impact 
on HFC and therefore reflects outbreeding depression 
[26, 46–48].

Despite this observed alteration in allele frequen-
cies, little variation in levels of multilocus heterozygo-
sity was recorded, suggesting high levels of inbreeding 
in female individuals. Interestingly, female individuals 
showed a rather low but also significant relationship 
between carapace length and overall heterozygosity 
measures, implying that inbreeding depression this 
time, is the primary mechanism for such an associa-
tion. Indeed, high levels of FIS may suggest non-random 
mating, thus indicating high inbreeding within females. 
Given this pattern, the observed loss of allelic frequen-
cies from the apparent local population, might imply 
some degree of adaptiveness to the local environment. 
The specific analyzed microsatellite loci were some-
what variable in all females and most of the individuals 
were homozygous at all these six loci. Such a docu-
mented absence of a fine-scale structure of the species 
to date [9, 16], may lead to smaller local effective popu-
lation sizes, and the possibility of a greater impact of 
inbreeding on fitness [49].

Moreover, significant levels of HFC differentiation 
among the two sexes could be explained by the actual 
migration of individuals favoring rather low relatedness 
within the population, suggesting a putative replace-
ment by immigrants. To this extent, this study illustrates 
that the near-panmictic N. norvegicus populations may 
profound a temporal genetic variation in a local-scale 
level, demonstrating the presence of a non-inbreed-
ing enhancement as a process of rare alleles transition. 
Although high inbreeding levels within temporal sam-
ples could affect the effective population size promoting 
low genetic differentiation among samples, the presence 
of non-breeders seems to have a greater local genetic 
impact than the dispersal of in-breeders. Nonetheless, 
the level of gene diversity was moderately high, implying 
either a degree of structuring, or an exchange of genes 
occurred in the past. Thus, taking into account the pres-
ently calculated mean generation interval of approxi-
mately 5.41  years for N. norvegicus, one could assume 
that at least one effective migrant each year might explain 
the recorded levels of pairwise genetic differentiation. 
It has been suggested [50] that a minimum of one and 
a maximum of ten migrants per generation would be 
the appropriate empirical rule for genetic conservation 
purposes.

The differential status with regards to sex was also 
profound in size classes. Pairwise comparisons of the 
mean length-at-size class showed that female indi-
viduals were smaller compared to males. This may be 
due to the different reproductive behavior of the spe-
cies in question, resulting to decreased catchability 
of female individuals [51]. On the other hand, due to 

Fig. 3  Plot of mean Carapace Length per month for each sex. Asterisks denote females and diamond-shape males, respectively
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the continuous breeding period [3] females’ adap-
tation possibly rests to their reproduction strategy 
rather than growth, thus resulting in lower growth 
rates [12, 41, 51]. The documented relative smaller 
size classes in females and the faster growth of males 
maybe represent a key-role differential strategy for 
the two sexes, whereas females tend to mature slower. 
Indeed, paternal generation interval is smaller com-
pared to the maternal one, indicating a cryptic and 
complex social behavior. Nevertheless, the apparent 
movement of male individuals as stated in the genetic 
analyses might explain at some extent the differences in 
size classes between the two sexes. The differences in 
monthly mean carapace length between the two sexes 
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Fig. 4  Regression plots of the three different measures of heterozygosity against the carapace length in male individuals (a MLH; b IR; c HL), and 
female individuals (d MLH; e IR; f HL). Dashed lines represent confidence intervals (95%)

Table 3  Regression analysis of variance of carapace length 
against MLH, IR and HL for female and male N. norvegicus 
sampled individuals; significances are in italics

MLH IR HL

Females

 Equation y = 33.30 + 4.053x y = 37.34 − 4.042x y = 37.39 − 4.188x

 r2 0.047 0.047 0.052

 F 4.870 4.870 5.36

 p value 0.030 0.030 0.023

Males

 Equation y = 54.01 − 24.89x y = 29.18 + 24.83x y = 30.42 + 22.22x

 r2 0.352 0.352 0.306

 F 17.95 17.95 14.55

 p value 0.001 0.001 0.001
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were found to be statistically significant in most of the 
cases. Non-significance in January and October might 
be explained by the fact that the brooding period pre-
sented the highest peaks just before these 2 months [3].

Sea water circulation pattern of the Aegean Sea 
depicts a far eastern movement of surface currents 
along Chalkidiki Peninsula (see [52]), following the 
eastern Greek mainland coastline entering Pagasitikos 
gulf through the Trikeri Strait with several, throughout, 
inflow and outflow patterns (see [53]). Evoikos gulf com-
municates with the Aegean Sea through Oreoi Channel 
and is mainly associated with frequent and intense tidal 
water movements (Fig. 1). The overall oceanographic pat-
tern facilitating larval movements through these areas 
for several marine species amplifies the precautions that 
should be taken into account, when recruitment and 
gene pool conservation strategies are implemented for N. 
norvegicus, besides specificities on fishing, spawning and 
feeding grounds/banks [54].

Conclusions
Conclusively, the northern/central Aegean Sea is sub-
jected to a strong influence of more eutrophic waters 
compared to the southern Aegean, featuring higher 
zooplankton abundance. Richness of a number of 
benthic species was negatively correlated with depth, 
partly reflecting the intense research activities in shal-
lower waters and the poor scientific knowledge of the 
deeper ones [55]. In that sense, N. norvegicus unifor-
mal genetic composition (background of high gene 
flow), could be attributed to potential population 
recolonization, due to a hypothesized passive larval 
movement from deeper waters, which may suggest 
that some offspring of local residents and potential 
male non-breeders from other regions admixture ran-
domly. Norway lobster has relatively high FIS values in 
the study area, suggesting that potential populations 
of the central Aegean Sea need to be identified and to 
apply conservation measures. Considering the above 
along with the apparent absence of physical barriers, 
individuals of the species in question within the study 
area may be favored to recruitment from an apparent 
nearby large population encountered in deeper waters 
as local fishermen claim.

Supplementary information
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