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Abstract 

Background:  Terrestrial, freshwater and marine green algae constitute the large and morphologically diverse phylum 
of Chlorophyta, which gave rise to the core chlorophytes. Chlorophyta are abundant and diverse in freshwater envi-
ronments where sometimes they form nuisance blooms under eutrophication conditions. The phylogenetic relation-
ships among core chlorophyte clades (Chlorodendrophyceae, Ulvophyceae, Trebouxiophyceae and Chlorophyceae), 
are of particular interest as it is a species-rich phylum with ecological importance worldwide, but are still poorly 
understood. In the Mediterranean ecoregion, data on molecular characterization of eukaryotic microalgae strains are 
limited and current knowledge is based on ecological studies of natural populations. In the present study we report 
the isolation and characterization of 11 green microalgae strains from Greece contributing more information for the 
taxonomy of Chlorophyta. The study combined morphological and molecular data.

Results:  Phylogenetic analysis based on 18S rRNA, internal transcribed spacer (ITS) region and the large subunit of 
the ribulose-bisphosphate carboxylase (rbcL) gene revealed eight taxa. Eleven green algae strains were classified in 
four orders (Sphaeropleales, Chlorellales, Chlamydomonadales and Chaetophorales) and were represented by four 
genera; one strain was not assigned to any genus. Most strains (six) were classified to the genus Desmodesmus, two 
strains to genus Chlorella, one to genus Spongiosarcinopsis and one filamentous strain to genus Uronema. One strain is 
placed in a separate independent branch within the Chlamydomonadales and deserves further research.

Conclusions:  Our study reports, for the first time, the presence of Uronema in an aquatic environment up to 40 °C 
and reveals new diversity within the Chlamydomonadales. The results from the ITS region and the rbcL gene corrobo-
rated those obtained from 18S rRNA without providing further information or resolving the phylogenetic relationships 
within certain genera, due to the limited number of ITS and rbcL sequences available. The comparison of molecular 
and morphological data showed that they were congruent. Cosmopolitan genera with high worldwide distribution 
inhabit Greek freshwaters.
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Trebouxiophyceae, Greece
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Background
All green algae and embryophyte plants belong to Vir-
idiplantae which were divided early into two evolutionary 
discrete lineages: the Chlorophyta and Streptophyta [1]. 
Chlorophyta are an ancient, morphologically and eco-
logically diverse lineage that include three major classes: 
Ulvophyceae, Trebouxiophyceae, Chlorophyceae (UTC) 

[2] and the majority of described species of green algae 
[1]. Approximately 8000 Chlorophyta species have been 
described, whilst it is estimated that at least 5000 spe-
cies still remain undescribed [3]. Despite the fact that the 
diversity of Chlorophyta is being studied for a long time, 
our knowledge for their taxonomic and phylogenetic 
relationships is still deficient [4]. Microscopic green algae 
are mainly identified based on specific morphological 
traits (general shape of the cells, position of chloroplasts, 
presence of pyrenoids, type of reproduction, colony for-
mation, flagella, ultrastructural characteristics etc.) [1]. 
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Nevertheless, morphological identification of microalgae 
can be very tough due to the absence of obvious struc-
tural features in most species and the high degree of vari-
ability of several of the observable characteristics within 
species [5, 6]. The morphological species concept is very 
subjective, thus the phylogenetic species concept or diag-
nostic concept [7] has gained a lot of ground [8–10]. 
As summarized by Krienitz and Bock [11] higher taxo-
nomic lineages such as divisions, classes and orders have 
been totally revised since molecular phylogenetic meth-
ods were introduced into the taxonomy of green algae. 
Molecular phylogenetic evidence has provided a substan-
tially improved understanding of the relationships among 
major lineages.

Molecular diversity and phylogeny of isolated members 
of Chlorophyta derived from Mediterranean freshwa-
ters is a relatively unexplored area; most of the existing 
studies investigate the ecological status of freshwaters, 
including morphological identification of microalgae 
[12–14]. Data on isolation and combined morphological 
and molecular characterization of Chlorophyta strains 
are limited and mainly focused on their biotechnologi-
cal potential [15, 16]. Greece is probably the most diverse 
Mediterranean country with an excessive level of diver-
sity and endemism of species [17] and it is not rare that 
new taxa are discovered in animal [18] and microalgal 
phyla [19, 20]. However, the phylogenetic relationships of 
Chlorophyta in Greece are barely known as the available 
information is derived almost exclusively from morpho-
logical and/or ecological studies of natural populations 
[21, 22]. This study investigates the diversity of green 
algae (Chlorophyta) strains isolated from freshwaters in 
Greece using a polyphasic approach including morphol-
ogy, 18S rRNA, ITS, and rbcL phylogeny.

Results
Eleven strains were isolated from surface water samples 
collected from six lakes (Doirani, Karla, Kastoria, Koro-
nia, Pamvotis, and Volvi) and one hot spring (Agkistro) 
located in Greece (Table 1). Three morphotypes of Chlo-
rophyta were identified using light microscopy; six strains 
corresponded to Desmodesmus-like species, four strains 
were coccoid, and one filamentous (Figs. 1, 2). According 
to morphology (Table 2) and phylogenetic analyses of 18S 
rRNA (Fig. 3), the 18S–28S ITS region (Fig. 4) and rbcL 
gene (Fig. 5), the isolated strains were placed into clades 
within the Chlorophyceae and Trebouxiophyceae.      

Based on 18S rRNA phylogeny (Fig. 3), the strains TAU-
MAC 0810, 2810, 3110 and 3410 were clustered together 
into the Sphaeropleales group, within Desmodesmus; 
strains 2810 and 3410 were placed within D. subspica-
tus and D. communis, respectively, whereas the strains 
0810, 3110 were clearly positioned within a separate 
Desmodesmus subclade comprised of D. abundans. In 
the order Chaetophorales, strain TAU-MAC 0215 was 
placed into the Uronema clade. Strains TAU-MAC 3510, 
3310 and their allied taxa form a separate independent 
branch within the Chlamydomonadales; 3510 formed a 
subcluster with a Chlorococcum strain and 3310 formed 
a well-supported (0.99 posterior probability) clade which 
contains a total of four OTUs: the studied strain, two 
isolates characterized as “Chlamydomonad sp.” (≥ 99.9% 
similarity) and one strain of the new genus and species 
Spongiosarcinopsis terrestris. A direct comparison of 
sequence similarities among the strains 1110, 3210 and 
Chlorella vulgaris showed a 99% sequence identity. Nev-
ertheless they formed a distinct subclade inside Chlorella 
vulgaris clade (Fig.  3). The well-supported relationships 
for strains TAU-MAC 0810, 1110, 2810, 3110, 3210, 3410, 
0215 identified in the 18S rRNA analysis were also found 

Table 1  Green algae strains isolated in this study and their origin

Strain (TAU-MAC) Origin Geographic coordinates Habitat Collection date

(N) (E)

Uronema sp. 0215 Agkistro hot springs 41° 22′ 04″ 23° 25′ 40″ Benthic 20/10/2015

Spongiosarcinopsis sp. 3310 Lake Doirani 41° 18′ 56″ 22° 45′ 37″ Planktic 21/8/2010

Desmodesmus communis 3410 Planktic 21/8/2010

Chlorella vulgaris 3210 Lake Karla 39° 28′ 29″ 22° 51′ 33″ Planktic 10/8/2010

Desmodesmus abundans 0810 Lake Kastoria 40° 31′ 11″ 21° 15′ 47″ Planktic 26/8/2010

Desmodesmus sp. 1010 Lake Koronia 40° 42′ 04″ 23° 08′ 17″ Planktic 30/3/2010

Chlorella vulgaris 1110 Planktic 15/6/2010

Desmodesmus abundans 3110 Planktic 15/6/2010

Desmodesmus subspicatus 2810 Lake Pamvotis 39° 40′ 51″ 20° 50′ 30″ Planktic 1/11/2010

Chlamydomonadales sp. 3510 Planktic 1/11/2010

Desmodesmus sp. 0910 Lake Volvi 40° 40′ 37″ 23° 33′ 10″ Planktic 12/7/2010
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in the ITS phylogeny (Fig. 4). Strains 0910, 1010 formed a 
clade with unidentified Desmodesmus species. The clos-
est relative of strain 3310 based on the ITS region, with 
96% identity, was a Balticola (MH068690.1) sequence. 
Sequences from rbcL regions were successfully amplified 
and sequenced only for fours strains: TAU-MAC 0810, 
1110, 3210, and 3410. Molecular data based on rbcL just 
corroborated the results coming from 18S rRNA and ITS 
phylogenies: strain 0810 formed a subclade with an uni-
dentified species within D. abundans clade, 3410 clus-
tered within D. communis clade and isolates 1110, 3210 
clustered together with Chlorella vulgaris sequences 
(Fig.  5). The different tree construction methods pro-
duced similar trees.

The morphology of Desmodesmus-like strains corre-
sponded to Desmodesmus as all of them had spines, in 
contrast to Scenedesmus spp. which have a smooth, non-
ornamented cell wall. The morphological and morpho-
metric characteristics of each strain are given in Table 2. 
Under light microscopy coenobia of the strains TAU-
MAC 0810 and 3110 were always spined with two polar 

and one lateral spine in the outer cells (Fig. 1g–k), a com-
mon trait of Desmodesmus abundans. The morphology 
of the strain TAU-MAC 2810 was similar to Desmodes-
mus subspicatus; coenobia were four-celled and always 
with lots of spines both in outer and inner cells (Fig. 1l, 
m). Strain TAU-MAC 3410 matched the morphological 
structure of Desmodesmus communis; four-celled coeno-
bia bearing four corner spines on the end cells of colonies 
(Fig. 1l, m). Strains TAU-MAC 0910 and 1010 exhibited 
intermediate structures to D. abundans and D. commu-
nis but with shorter subpolar and lateral spines and were 
classified as Desmodesmus sp. (Fig.  1a–f). Under light 
microscopy, strains TAU-MAC 1110 and 3210 were the 
classical “green balls”, tiny, solitary-living and simply 
propagating spherical microalgae (Fig.  2i–n), match-
ing the morphological description of Chlorella vulgaris. 
Coenobia of the strain TAU-MAC 3310 were organized 
into dyads, tetrads, or packets resulting from desmoschi-
sis (Fig.  2o–r), as in the recently described genus Spon-
giosarcinopsis; species discrimination was not possible 
due to lack of data. The strain TAU-MAC 3510 exhibited 
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Fig. 1  Microphotographs of strains TAU-MAC 0810, 0910, 1010, 2810, 3410 under light microscopy. a–c Desmodesmus sp. TAU-MAC 0910 and d–f 
TAU-MAC 1010 demonstrating mature and young coenobia with polar and lateral spines; a, c, d autosporangia, a, d cell wall ornaments observable 
from cell wall residues, f eight-celled coenobium. g–i Desmodesmus abundans TAU-MAC 0810 and j, k TAU-MAC 3110; coenobia with polar and 
lateral spines, unicells and aggregation forms. l, m Desmodesmus subspicatus TAU-MAC 2810; coenobia with lots of lateral spines. n, o Desmodesmus 
communis TAU-MAC 3410. Bars, 10 μm
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solitary, spherical cells with the ability to form cell aggre-
gates (Fig.  2s–v) but no other characteristic traits or 
flagella were observed, therefore we could not assign it 
to any genus of the Chlamydomonadales. Under light 
microscopy the strain TAU-MAC 0215 displayed mor-
phological traits of the genus Uronema; filaments unise-
riate, unbranched, attached to substratum by holdfast, 
bearing a pointed apical cell at the free end (Fig. 2a–h). 
For most of the strains, the comparison of molecular and 
morphological data showed that they were congruent. 
Interestingly, both morphology and phylogeny placed the 

strain TAU-MAC 3510 within the Chlamydomonadales, 
but provided insufficient evidence to identify a genus.

Discussion
In this study we report for the first time the isolation and 
polyphasic taxonomy of freshwater green algae strains 
from Greece belonging to the genera Desmodesmus, 
Chlorella, Spongiosarcinopsis and Uronema. A small 
number of Tetraselmis strains have been previously iso-
lated from Greek lagoons [23] but freshwater species 
have been characterized mainly through microscopic 
observations [22, 24–27] or molecular cloning of the 
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Fig. 2  Microphotographs of strains TAU-MAC 0215, 1110, 3210, 3310, 3510 under light microscopy. a–h Uronema sp. TAU-MAC 0215; a–c, e different 
morphologies of the holdfast, d release of aplanospores, f–h filaments with apical cells showing alterative degree of tapering. i–k Chlorella vulgaris 
TAU-MAC 1110 and l–n TAU-MAC 3210; demonstrating sporangium with two autospores, young and mature cells with one big pyrenoid. o–r 
Spongiosarcinopsis sp. TAU-MAC 3310; o, p young vegetative cells derived from zoospores or aplanospores, aplanospores and aplanosporangium, q, 
r mature vegetative cells arranged in dyad and tetrad aggregation. s–v Chlamydomonadales sp. TAU-MAC 3510; s–u mature vegetative cells form 
tight aggregations, v autospores
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18S rRNA gene [28, 29]. Most of the TAU-MAC strains 
(0810, 0910, 1010, 2810, 3110 and 3410) belong to the 
genus Desmodesmus, one of the most abundant genera 
in fresh to brackish waters all over the globe [30]. Their 
cosmopolitan occurrence illustrates the wide range of 
environmental conditions these organisms can toler-
ate due to the high degree of polymorphism they exhibit 
[31, 32]. The genus Desmodesmus was separated from 
Scenedesmus sensu lato based on ITS2 sequences [33] but 
Desmodesmus species taxonomy remains one of the most 
long-standing issues in green microalgal systematics 
[34]. Many of the Desmodesmus strains/species display 

considerable morphological variability due to nutri-
ent availability, environmental signals and culture con-
ditions [34, 35]. This issue has led to the description of 
more than 1300 species and sub-specific taxa in the for-
mer genus Scenedesmus, of which many are invalid [36]. 
This is obvious from our phylogenetic trees where, within 
Desmodesmus clades, not revised sequences previously 
characterized as Scenedesmus are included (e.g. the 
sequences AJ249514.1 and X73995.1 which are described 
as Scenedesmus but actually refer to D. subspicatus and 
D. abundans, respectively). Strains TAU-MAC 0810 
and 3110 were identified as Desmodesmus abundans by 

Table 2  Morphometric and morphological characteristics of the TAU-MAC strains isolated from freshwaters in Greece

Strain (TAU-MAC) Description Figures Taxonomic assignment

0910, 1010 Colonial green algae having flat colonies that consist of two or four cells linearly arranged 
along their long axes. Four-celled coenobia most frequent, but also two-celled and 
eight-celled were observed. Cell dimensions 8–14 µm long and 3–7 µm wide with one 
big pyrenoid, short subpolar spines and small lateral. Ribs and rosettes present. Asexual 
reproduction by aplanosporogenesis

1a–f Desmodesmus sp.

0810, 3110 Cells ovoid and elongated, slightly larger and more elongated in 0810 than in 3110, with 
one clearly visible pyrenoid surrounded by a sheath of starch plates. The ellipsoidal cells 
had dimensions 3–9 × 2–6 μm (0810) and 2–7 × 2–5 μm (3110). The single, spineless cells 
were dominant in 0810 isolate. The rare four-celled coenobia were always spined with two 
polar and one lateral spine in the outer cells. Two-celled coenobia were the most frequent 
in 3110 isolate and less commonly four-celled linearly arranged along their long axes. The 
coenobia had two polar spines in each outer cell, rarely lateral spines were observed. Sin-
gle cells often had two polar spines. Reproduction by autospores produced by longitudinal 
division, two to eight per sporangium

1g–k Desmodesmus abundans

2810 Cells ovoid with single large pyrenoid. The two-celled coenobia were common, but four-
celled coenobia were predominant and always with lateral spines both in outer and inner 
cells. Cell dimension 5–13 µm long and 3–7 µm wide. Asexual reproduction by aplano-
sporogenesis

1l, m Desmodesmus subspicatus

3410 Ellipsoidal cells (11–21 µm long and 3.4–9 µm wide); coenobia linearly arranged with one big 
pyrenoid per cell covered with starch envelope. The dominant four-celled and rare eight-
celled coenobia were always spined with one spine at each pole of outer cells. The entire 
coenobium was surrounded by an outermost cell wall layer which is visible between poles 
of inner cells of coenobia. Coenobia with lateral spines in inner cells ware observed very 
rarely. Asexual reproduction by division of mother cell into 4 daughter cells

1n, o Desmodesmus communis

0215 Filaments unbranched and indefinite in length. Cells are cylindrical, elongated, closely adher-
ent to one another, uninucleate. Cell diameter increases with the age of a filament from 4 
to 10 μm and 7 to 23 μm long, containing more than one pyrenoid. Most of the filaments 
possess a pointed apical cell at the free end which exhibit a different degree of tapering 
(acuminate, apiculate or attenuate) and a holdfast for attachment by means of a modified 
basal cell. The morphology of the holdfast also varies from small and colorless to massive 
and dark brownish-red. The unbranched filaments may undergo fragmentation. Asexual 
reproduction takes place by aplanosporogenesis or zoosporogenesis

2a–h Uronema sp.

1110, 3210 Cells always spherical and microscopic, 3–9 μm in diameter with one large pyrenoid. Young 
cells ellipsoidal, becoming spherical at maturity. Reproduction by autosporogenesis usually 
two autospores per sporangium

2i–n Chlorella vulgaris

3310 Ellipsoidal to spherical solitary young cells 4–9 µm in diameter. Each young cell contains one 
relatively big nucleus and one pyrenoid covered with starch envelope. Mature cells ovoid 
to irregular in shape, 19 µm in max. dimension, organized into dyads, tetrads, or packets 
resulting from desmoschisis. Mature cells remain uninucleate, possessing one to four pyr-
enoids. Asexual reproduction performed by desmoschisis or zoospores and aplanospores

2o–r Spongiosarcinopsis sp.

3510 Solitary vegetative cells spherical to irregular form, 7–13 μm diameter with the ability to form 
cell aggregates. One or several pyrenoids, single nucleus or multiple nuclei directly before 
reproduction by aplanospores. Flagella not visible under the light microscope. Asexual 
reproduction by aplanospores

2s–v Chlamydomonadales sp.
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molecular and morphological analysis. Because of the 
extensive morphological variability of the species [37], 
organisms previously belonging even in different classes 
(e.g. Chlorella fusca SHIH. et KRAUSS) have been reas-
sessed as D. abundans [37, 38]. Different morphological 
structures were observed in our cultures also. Molecu-
lar phylogenies based on the 18S rRNA and ITS regions 
placed strain 2810, with very high node support, in a 
clade with Desmodesmus subspicatus strains isolated 
from different freshwaters worldwide [38–42]. However, 
this strain was isolated from the hypertrophic, shallow 

Lake Pamvotis where heavy toxic cyanobacterial blooms 
are frequently formed [43]. Morphological taxonomy was 
congruent to the molecular classification [35]. Strains 
TAU-MAC 0910 and 1010 were identified as Desmodes-
mus as well, since they plainly clustered together with 
unidentified species of the genus. Phylogenetic analy-
ses could not be conclusive down to the species level as 
their DNA was amplified only with ITS region primers. 
Moreover, morphology did not allow species delimita-
tion, owing to morphological criteria we could not point 
out, due to the phenotypic plasticity of Desmodesmus 
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Fig. 3  Bayesian inference (BI) phylogenetic tree of relationships of 18S rRNA (c. 1700 bp) of green algae strains isolated from waterbodies of Greece, 
including the classes Chlorophyceae and Trebouxiophyceae. Support values are indicated as posterior probability for BI and bootstrap support for 
maximum likelihood (ML) and maximum parsimony (MP) analysis (BI/ML/MP). The numbers in parentheses are GenBank accession numbers
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and the similarity of structures between Desmodesmus 
species [31, 44]. In the 18S rRNA and ITS phylogeny all 
sequences that clustered together into well-supported 
clades with the strain TAU-MAC 3410 are Desmodesmus 

communis [also known with the traditional name Scened-
esmus quadricauda Turp. (Bréb)], isolated from Europe 
to Asia [45, 46]. The alignment of these sequences 
with 3410 showed identity up to 99%. The rbcL-based 
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phylogeny supports the previous results, since 3410 
clustered together with a Scenedesmus quadricauda 
sequence [47] probably belonging to a non-revised D. 
communis [45]. Under light microscopy, TAU-MAC 3410 
displayed the common structure of the species [46, 48]. 
The species has a wide distribution in freshwaters, mainly 
in those with moderate temperature and in the slightly 
eutrophicated ones [46] but our strain was isolated from 
Lake Doirani, an extremely eutrophic lake [49]. Species of 
the genus have been identified in freshwaters of Greece 
[21, 25, 27, 50].

Greek lakes also host Chlorella vulgaris, the archetypi-
cal form of coccoid green algae firstly described by Bei-
jerinck in 1890 [51]. Molecular phylogeny based on three 
molecular markers placed strains TAU-MAC 1110 and 
3210, with high bootstrap values, in clades with Chlorella 

vulgaris strains isolated from various environments. The 
microscopic observations merely confirmed the molecu-
lar results [51, 52]. Chlorella and its relatives belong to 
the most common aquatic, terrestrial and aerophytic 
algae with ubiquitous distribution [53]. The sequences 
clustering together with TAU-MAC strains originate 
from different habitats of USA, Europe, New Zealand 
and Japan, while TAU-MAC strains were isolated from 
the two hypertrophic Lakes Pamvotis and Koronia [22, 
25, 54]. This is the first report of Chlorella vulgaris pres-
ence in these lakes. Furthermore, because of its tiny size, 
population size and physiological ability to tolerate desic-
cation or other types of abiotic stress, Chlorella has been 
reported as an air-dispersed microorganism in Greece 
[24, 55].
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The phylogenetic position with maximal bootstrap 
value of TAU-MAC 0215 isolated from hot springs 
clustered with representatives of the filamentous genus 
Uronema. Under light microscopy, the strain exhib-
ited the typical morphological features of the genus [56, 
57]. Its 18S rRNA sequence showed 99–100% pairwise 
sequence identity with all Uronema species included 
in the clade, whilst in ITS phylogeny the closest rela-
tive (98.2% similarity) was an unidentified Uronema 
sequence. Representatives of the genus appear as benthic 
algae in mesotrophic and eutrophic ecosystems while are 
common in both terrestrial and aquatic environments 
[56, 58]. The strains clustering together with TAU-MAC 
0215 have a wide distribution since they are derived from 
North America to Europe. To the best of our knowl-
edge, this is the first report of the presence of Uronema 
in an aquatic environment up to 40  °C. Representatives 
of Uronema in Greece have been previously reported in 
Lake Amvrakia [59].

The strains TAU-MAC 3310 and 3510 were placed in 
a separate independent branch within the Chlamydomo-
nadales, the largest group of Chlorophyceae with a com-
plex taxonomic history [1]. Phylogenetic analyses of 
nuclear and chloroplast DNA sequences have changed 
the concept of the class: this clade includes a large num-
ber of Chlamydomonadales taxa, plus taxa formerly 
placed in Dunaliellales, Chlorococcales, Tetrasporales, 
Chlorosarcinales, Volvocales, and Chaetophorales as 
summarized by Leliaert et al. [1]. The closest 18S rRNA 
sequence to TAU-MAC 3510 was the strain Chlorococ-
cum sp. JB8 isolated from extreme saline–alkali soil in 
China [60]; however, the low pairwise sequence simi-
larity (96%) and the lack of other morphological traits 
suggest that our strain forms a novel clade within Chla-
mydomonadales. The closest relative of TAU-MAC 3310 
with 99% similarity (18S rRNA) was a strain isolated 
from a gray forest soil in Russia belonging to the novel, 
recently described genus and species Spongiosarcinopsis 
terrestris [61], together with two unclassified representa-
tives of Chlamydomonadales (Pic8/18P-3d and Pic8/18P-
5w) derived from an eutrophic pond in Itaska State Park, 
Minnesota [62]. In 18S rRNA phylogeny, 3310 was placed 
in a well-supported clade with the two isolates men-
tioned previously, forming a distinct subclade inside the 
Spongiosarcinopsis clade. Even if the strain displayed 
similar morphological characteristics to S. terrestris, the 
different niche (aquatic vs. terrestrial) and the separate 
subclade suggest that our strain together with Pic8/18P-
3d and Pic8/18P-5w belong to a different Spongiosarci-
nopsis species and deserve further research. Buchheim 
et al. [63] studying the phylogeny of the Chlamydomon-
adales, compared nuclear-encoded small-subunit rRNA 
sequences and chloroplast-encoded large subunit rRNA 

sequences from flagellate green algae. Their analyses 
showed that the chloroplast phylogenies are clearly more 
robust than the nuclear phylogenies suggesting that the 
chloroplast data are more variable having a greater den-
sity of genetically informative sites than the nuclear data. 
Unfortunately, the rbcL gene could not be amplified in 
strains 3510 and 3310. Studies discuss the universality 
of primers for this marker and they indicate the need to 
design more efficient and robust primers for a broader 
coverage of plant species [64, 65].

Conclusions
Polyphasic taxonomy based on three genetic markers 
(18S rRNA, ITS and rbcL gene) and morphology divulged 
eight taxa among eleven strains from Greek freshwaters. 
Most of the strains were identified as Desmodesmus. 
Some representatives of the genus have already been rec-
ognized in Greek freshwaters but this is the first time they 
are isolated and identified by molecular analyses. Two 
strains could be assigned to Chlorella vulgaris and this 
is the first report of its presence in the lakes where they 
were isolated from. One filamentous strain belongs to the 
genus Uronema, reported for the first time in an aquatic 
environment up to 40  °C. Two strains (3310, 3510) are 
placed in a separate independent branch within the Chla-
mydomonadales indicating novel diversity that deserves 
further investigation. Green algae isolated from Greek 
lakes seem to be cosmopolitan and non-toxic. Molecular 
data from the three genetic markers converged but more 
submitted sequences are needed to clarify relationships 
within the genera.

Methods
Sample collection, isolation and culture
Strains were isolated from water samples collected from 
six freshwaters of Greece and from an algal mat in a 
thermal spring between 2010 and 2015 (Table 1). Water 
samples were collected from the surface layer (0–0.5 m) 
of inshore sites, details are given in Gkelis and Zaout-
sos [66]. The algal mat sample was collected after care-
fully scratching with a sterile scalpel the mat and placing 
the detached mat in sterile 50  mL polyethylene vessels. 
All sampling sites were chosen based on existing data on 
the occurrence of green algae [21, 29, 50, 67] or in  situ 
observations. For a description of the lakes, see [22, 
68, 69]. Thermal springs of Agkistro are located in the 
homonymous village, the northernmost village of Serres 
(N. Greece) and they feed the area’s thermal spa facili-
ties, dating back to 925 AD [70]. The hot spring water 
(40  °C) is characterized as meteoric, sterile, oligome-
tallic, sodium, calcium, sulphate, oxycarbonate, potas-
sium, fluoride, hypotonic, thermal water [71, 72]. Strains 
were isolated on solid growth media using classical 
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microbiological techniques and grown as batch clonal 
unialgal cultures [73]. The algal strains are deposited in 
Aristotle University of Thessaloniki MicroAlgae and 
Cyanobacteria Culture Collection (TAU-MAC) [74] and 
can be accessed at [75].

Strains were cultured in BG-11 medium with nitrogen 
[76] and maintained in the same medium by regular sub-
culturing every 2  weeks. Cultures were grown as liquid 
batch cultures at a photosynthetic photon flux density of 
20 μmol m−2s−1 using cool white light fluorescent tubes 
(Sylvania Standard F36W/154-T8, SLI) at 20 ± 2  °C in 
culture room, in a 16:8 h light:dark cycle.

Light microscopy and morphology
A Zeiss Axio Ιmager.Z2 (Carl Zeiss, Germany) micro-
scope using bright field and differential interference con-
trast was used. Microphotographs were taken with an 
Axio Cam MRc5 digital camera (Carl Zeiss, Germany). 
Strains were identified using special taxonomic papers 
[35, 37, 38, 46, 48, 51, 52, 56, 57, 61]. Mean cell dimen-
sions were calculated after measuring the dimension of at 
least 50 cells of each strain.

DNA extraction and PCR
The protocol described in Atashpaz et  al. [77] was used 
to extract DNA from algae. PCR was carried out using 
the primer pairs and under the conditions described in 
Table 3. Thermal cycling was carried out using an Eppen-
dorf MasterCycler Pro (Eppendorf). The PCR products 
were visualized on a 1.2% w/v agarose gel in 1× TAE buffer 
under UV light, and were purified using the Nucleospin® 
Gel and PCR Clean-up kit (MACHEREY-NAGEL).

Analysis of sequence data
For each individual strain, forward and reverse reads were 
assembled and the assembled sequences were checked 
for chimeras using the RDPII chimera detection [82]. 
Sequence data were visually inspected using BioEdit (Ibis 
Biosciences 1997–2015©) and the sequences were edited 
manually, where necessary. For the detection of closest 

relatives, all sequences were compared with the BLAST 
function [83] and aligned with sequences obtained from 
GenBank [84] databases, using the ClustalW [85] align-
ment utility through MEGA6 software [86]. Phylogenetic 
analyses were performed using maximum parsimony (MP) 
and maximum likelihood (ML) methods implemented 
in MEGA6 and the confidence of the tree topologies was 
checked using bootstrap analyses (1000 replicates). Using 
the jModelTest 0.1.1 [87], the GTR+I+G model was 
determined as the most appropriate and was used for all 
ML and BI analyses (18S rRNA, ITS, rbcL). Bayesian phy-
logenetic analyses were also performed using MrBayes 
3.2.1 [88] with 10,000,000 generations of Markov chain 
Monte Carlo iterations (MCMC), discarding the first 25% 
as burn-in and the following datasets were sampled every 
1000th generation. The nucleotide sequences of the par-
tial 18S rRNA, ITS and rbcL gene regions from chloro-
phyta strains in this study were deposited in GenBank with 
accession numbers MK496891–MK496899, MK496922–
MK496931 and MK503332–MK503335, respectively.
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