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Abstract 

Background: Because of the highly heterogeneous nature of breast cancer, each subtype differs in response to 
several treatment regimens. This has limited the therapeutic options for metastatic breast cancer disease requiring 
exploration of diverse therapeutic models to target tumor specific biomarkers.

Methods: Differentially expressed breast cancer genes identified through extensive data mapping were studied 
for their interaction with other target proteins involved in breast cancer progression. The molecular mechanisms by 
which these signature genes are involved in breast cancer metastasis were also studied through pathway analysis. The 
potential drug targets for these genes were also identified.

Results: From 50 DEGs, 20 genes were identified based on fold change and p-value and the data curation of these 
genes helped in shortlisting 8 potential gene signatures that can be used as potential candidates for breast cancer. 
Their network and pathway analysis clarified the role of these genes in breast cancer and their interaction with other 
signaling pathways involved in the progression of disease metastasis. The miRNA targets identified through miRDB 
predictor provided potential miRNA targets for these genes that can be involved in breast cancer progression. Several 
FDA approved drug targets were identified for the signature genes easing the therapeutic options for breast cancer 
treatment.

Conclusion: The study provides a more clarified role of signature genes, their interaction with other genes as well 
as signaling pathways. The miRNA prediction and the potential drugs identified will aid in assessing the role of these 
targets in breast cancer.
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Background
Cancer is one of the leading causes of death for the past 
several years and is the second cause of mortality accord-
ing to the American Cancer Society (ACS) statistics 
after cardiovascular, infectious and parasitic disorders. 
Breast cancer is one of the most commonly diagnosed 

life-threatening malignancy that remains to be the lead-
ing cause of cancer incidence and mortality in women 
globally [1].

Several factors have been attributed towards the devel-
opment of breast carcinoma. These include age, personal 
history of breast cancer, reproductive, environmental 
and genetic factors. Increasing age enhances the risk of 
breast cancer development [2]. Having a personal history 
of breast cancer also contributes towards a greater risk of 
second breast cancer that can be ipsilateral or contralat-
eral. Family history of breast cancer can also enhance the 
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risk of development of cancer in women. About 5–10% 
of women with breast cancer show an autosomal domi-
nant inheritance while 20–25% have a positive family his-
tory [3]. Genetic predisposition alleles showing 40–85% 
of lifetime threat of breast cancer development include 
BRCA1 and BRCA2 mutations, TP53 mutations, PTEN, 
STK11, E-cadherin and neurofibromatosis (NF) [4].

The treatment strategies for breast cancer are largely 
determined by the status of progesterone receptor, estro-
gen receptor and the human epidermal growth factor 
receptor 2. Clinicopathological factors such as tumor 
grade, size and status of lymph node also determine the 
therapeutic plan, however, the biomarkers for the tumor 
invasion and metastasis are of profound importance in 
order to formulate new markers and treatment strategies 
for breast carcinomas. This will aid in both current thera-
pies and tumor prognosis [5].

With the aid of in silico bioinformatic approaches the 
attainment of new treatment strategies have become 
easier. One such approach that has helped in identifying 
new markers in cancer therapy is the cDNA differential 
analysis [6]. In this study, 24 datasets were downloaded 
to analyze gene expression profiles in breast cancer and 
a functional analysis was performed to identify the dif-
ferentially expressed genes (DEGs) between breast tumor 
cells and treated tissues. A genetic network was con-
structed as well as pathway analysis and miRNA target 
identification were performed to understand the underly-
ing molecular mechanisms and to identify potential ther-
apeutic targets for breast cancer. Moreover, drug-gene 
network analysis has also been performed to identify 
potential drug targets for breast cancer.

Methods
Accession of gene expression data
The study focuses on the identification of potential breast 
cancer targets through a differential screening method. 
The datasets of breast cancer were accessed from Gene 
Expression Omnibus database. The screening criteria 
was “organism: Homo sapiens”, and “experiment type: 
expression profiling by array”. The Affymetrix GeneChip 
Human Genome U133 Plus 2.0 Array (CDF: Hs133P_
Hs_ENST, version 10) (Affymetrix, Inc., Santa Clara, 
CA, 95051, USA) platform was used. All datasets com-
prised of GEO accession number, platform, sample type, 
number of samples and gene expression data. The array 
platform and hgu133plus2 annotation platform of probes 
were used to identify the differentially expressed genes. 
The software R and Bioconductor packages AffyQCRe-
port, Affy, Annotate, AnnotationDbi, Limma, Biobase, 
AffyRNADegradation, hgu133plus2cdf, and hgu133a2cdf 
were used to perform the computational analysis [7].

Preprocessing and differential expression analysis 
of microarray datasets
The preprocessing of datasets was performed by prepar-
ing the phenodata files for each dataset in a recognizable 
format [8]. Using the R version 3.1.3, the Bioconduc-
tor ArrayQuality Metrics package was utilized for the 
normalization of the data to a median expression level 
for each gene [7]. After normalization, the background 
correction was done for perfect match (pm) and mis-
match (mm) by Robust Multi-array Analysis (RMA). 
The method was used to eliminate the artifacts and local 
noise. The expression value with a p-value < 0.15 was 
measured as marginal log transformation. Afterwards, 
summarization was performed by RMA-algorithm in 
order to measure the averages between probes in a probe 
set to attain the summary of intensities.

The quality of RNA in these microarray datasets was 
measured using the AffyRNADegradation package of 
Bioconductor, also called degradation analysis [9]. Lastly, 
the DEGs in each dataset were identified by pairwise 
comparison and the Benjamini–Hochberg method [10] 
was employed for multiple testing correction. The dif-
ferentially expressed genes were shortlisted and ranked 
according to their p-values and resulting scores. The cut-
off values set were p-value ≤ 0.05, FDR < 0.05 (False Dis-
covery Rate) and absolute log fold change logFC > 1 [11] 
to calculate the moderated statistics.

Data curation and cluster analysis
The shortlisted genes obtained through differential 
expression analysis were further screened to confirm 
their role in breast cancer using diverse data sources 
such as PubMed (http://www.ncbi.nlm.nih.gov/pubme 
d), MeSH (http://www.ncbi.nlm.nih.gov/mesh), OMIM 
(Online Mendelian Inheritance in Man) (http://www.
ncbi.nlm.nih.gov/omim), and PMC database (http://
www.ncbi.nlm.nih.gov/pmc) [12]. Biomedical text mining 
helped in filtering significant disease specific genes. The 
CIMminner tool was used to perform the cluster analysis 
based on the expression values in each dataset using the 
Absolute Pearson correlation analysis. The cluster analy-
sis revealed variations in gene expression levels between 
control and treated replicates [13].

Network analysis and identification of gene signatures
The protein–protein interaction network helped in iden-
tifying the interaction of each protein with other genes 
having different biological or molecular functions in a 
diseased state as compared to normal. The Search Tool 
for the Retrieval of Interacting Genes/Proteins (STRING) 
[14] and Human Annotated and Predicted Protein Inter-
action (HAPPI) databases [15] were used to evaluate the 
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proteins that interacted with each other in breast cancer 
with a confidence score of 0.999. The visualization and 
analysis of molecular interactions of seeder genes with 
the target genes were done using Cytoscape (version 
3.2.1, Temple Place, Suite 330, Boston, MA 02111-1307 
USA) software. The role of target genes in breast can-
cer was mapped by OMIM, MeSH, and PMC databases 
to identify the breast cancer associated gene signatures 
whose dysregulation causes a pathological phenotype. A 
molecular sub-network of those genes that were associ-
ated with pathways of interest causing breast cancer was 
constructed. The topological network properties were 
calculated using Network Analyzer in Cytoscape [16]. 
The web-based tools Database for Annotation Visualiza-
tion and Integrated Discovery (DAVID) [17] and FunRich 
[18] were used to study the biological functions of these 
genes including the gene ontology, functional annotation 
and pathway enrichment analysis [19, 20].

miRNA target prediction
miRNAs are small non-coding RNAs considered as post-
transcriptional regulators of several biological processes. 
Dysregulation of miRNAs leads to disruption of signal-
ing pathways causing disease. The influence of miRNAs 
on gene targets is one beneficial approach to get a bet-
ter understanding of disease etiology [21]. The miRNA 
targets of breast cancer related genes were predicted 
by miRDB target predictor (www.mirdb .org), an online 
database for miRNA target prediction and functional 
annotation. The miRNAs were selected based on the tar-
get score (≤ 99).

Integrated pathway modeling
The integrated and metabolic networks of breast can-
cer related source genes were analyzed and the correla-
tion between test genes was observed. To recognize the 
underlying pathways involved in the progression of breast 
cancer, pathway analysis was performed for identifying 
biomarkers of the disease. The curation and mapping of 
candidate biomarkers were done using Kyoto Encyclope-
dia of Genes and Genomes (KEGG) [22], Reactome and 
Wiki pathways. PathVisio3tool was used to reconstruct 
the cellular and signaling pathways of potential biomark-
ers [23] and the potential mechanism of each marker in 
the pathway was studied based on evidence available in 
literature and databases.

Drug‑gene network analysis
The target genes interrelated with the anti-breast cancer 
drugs were identified using CTD (http://ctdba se.org/) 
database, an open source database for the curation of 
chemical–gene, gene–disease and chemical–disease 

interactions from literature [24]. The chemical–gene 
interaction query was used to access drugs against each 
breast cancer related genes. Drugs that were directly 
linked with breast cancer related genes were sorted in 
this interaction network. The FDA approval status of 
these drugs was also verified using the DrugBank data-
base [25].

Results
Gene expression analysis and normalization
Twelve breast cancer datasets were downloaded from the 
GEO database with cell format. Each database was hav-
ing size of ArrayBatch object 1164 × 1164 and 732 × 732 
features with related Affyids (Table 1). Quantile normali-
zation was performed for normalization and background 
correction. This was done to avoid systematic variation. 
The probe level data obtained after normalization show 
the quality of the individual array of each dataset in the 
MA plots (Fig. 1). The severity of RNA-degradation and 
significance level was presented by the function plotAf-
fyRNAdeg (Fig. 2) and a single summary statistic for each 
array in the batch was produced by the function sum-
mary of AffyRNAdeg (Additional file 1: Table S1). Addi-
tional file 2: Table S2 provides the list of databases, tools, 
and software used in this study.  

Identification and screening of differentially expressed 
genes
In each dataset the differential expression analysis pro-
vided 50 DEGs by pairwise comparison between biologi-
cally comparable groups. Out of these 50 DEGs, the top 
24 genes were ranked and selected in each dataset. The 
selection was based on FDR (< 0.05), p-value (≤ 0.05) and 
|logFC| (> 1) parameters. These 24 DEGs were further 
shortlisted to eight common genes as potential biomark-
ers for breast cancer (Additional file 3: Table S3).

Data curation and cluster analysis
The gene mapping of 24 DEGs through PubMed, OMIM, 
MeSH, and PMC databases provided eight significant 
breast cancer associated genes: ID4, NCOA1, RHEB, 
PDZK1, PLAUR, AKC1R2, ANXA1 and SLIPI. The role 
of these genes in breast cancer was curated and counted 
(Table  2). The genetic expression of breast cancer cell 
samples showed a clear difference between the control 
and treated replicates (Fig. 3).

miRNA target prediction analysis
The computational algorithms (miRDB) identified mul-
tiple breast cancer associated miRNA targets for each 
gene such as hsa-miR-650, hsa-miR-203a-3p, hsa-miR-
4520-3p, hsa-miR-1185-1-3p, hsa-miR-15b-3p and 

http://www.mirdb.org
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Table 1 List of cDNA datasets

Dataset 
Accession No.

Total samples Tissues Species Conditions/type Platform Size of arrays AffyIDs References

GSE83325 4 Breast cancer Homo sapiens Control vs. treated GPL15207 [Pri-
meView] Affy-
metrix Human 
Gene Expression 
Array

732 × 732 features 49495 [35]

GSE28645 14 Breast cancer Homo sapiens Control vs. treated GPL570 [HG-
U133_Plus_2] 
Affymetrix 
Human Genome 
U133 Plus 2.0 
Array

1164 × 1164 
features

54675 [36]

GSE28448 11 Breast cancer Homo sapiens Control vs. treated GPL570 [HG-
U133_Plus_2] 
Affymetrix 
Human Genome 
U133 Plus 2.0 
Array

1164 × 1164 
features

54675 [37]

GSE27444 14 Breast cancer Homo sapiens Control vs. treated GPL570 [HG-
U133_Plus_2] 
Affymetrix 
Human Genome 
U133 Plus 2.0 
Array

1164 × 1164 
features

54675 [38]

GSE12791 16 Breast cancer Homo sapiens Control vs. treated GPL570 [HG-
U133_Plus_2] 
Affymetrix 
Human Genome 
U133 Plus 2.0 
Array

712 × 712 features 22283 [39]

GSE33658 22 Breast cancer Homo sapiens Control vs. treated GPL570 [HG-
U133_Plus_2] 
Affymetrix 
Human Genome 
U133 Plus 2.0 
Array

1164 × 1164 
features

54675 [40]

GSE116781 6 Breast cancer Homo sapiens Control vs. treated GPL15207 [Pri-
meView] Affy-
metrix Human 
Gene Expression 
Array

732 × 732 features 49495 [41]

GSE146911 11 Breast cancer Homo sapiens Control vs. treated GPL570 [HG-
U133_Plus_2] 
Affymetrix 
Human Genome 
U133 Plus 2.0 
Array

1164 × 1164 
features

54675 [42]

GSE151635 12 Breast cancer Homo sapiens Control vs. treated GPL571 [HG-
U133A_2] Affy-
metrix Human 
Genome U133A 
2.0 Array

732 × 732 features 22277 [43]

GSE71363 18 Breast cancer Homo sapiens Control vs. treated GPL570 [HG-
U133_Plus_2] 
Affymetrix 
Human Genome 
U133 Plus 2.0 
Array

1164 × 1164 
features

54675 [44]
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hsa-miR-942-5p. The dysregulation of these signature 
genes is linked to the progression of breast cancer. The 
genes ID4, RHEB, AKR1C2, ANXA1 and PDZK1 pre-
dicted 191, 74, 108, 41 and 41 miRNAs hits, respectively 
(Table 3).

Protein network analysis
The protein–protein interaction analysis revealed the 
interaction of breast cancer related genes with other 
potential genes contributing to a pathological phenotype. 

The network showed a total of 207 nodes and 226 edges 
that were retrieved from STRING [14] and HAPPI [15] 
databases. The network was categorized in three neigh-
borhoods: red and blue nodes indicate the breast can-
cer associated potential biomarkers while the remaining 
yellow nodes represent the non-breast cancer target 
proteins. The potential biomarkers were found to func-
tionally interact with other biologically essential tar-
get proteins, some of which are TCF4, TP53, mTOR, 
NOTCH1, ESR1 and ESR2. The source protein ID4 

Table 1 (continued)

Dataset 
Accession No.

Total samples Tissues Species Conditions/type Platform Size of arrays AffyIDs References

GSE99860 16 Breast cancer Homo sapiens Control vs. treated GPL570 [HG-
U133_Plus_2] 
Affymetrix 
Human Genome 
U133 Plus 2.0 
Array

1164 × 1164 
features

54675 [45]

GSE99861 16 Breast cancer Homo sapiens Control vs. treated GPL570 [HG-
U133_Plus_2] 
Affymetrix 
Human Genome 
U133 Plus 2.0 
Array

1164 × 1164 
features

54675 [46]

Fig. 1 MA plots showing normalization and analysis of quality array metrics. Plots of log intensity ratio (M) vs. log intensity averages (A). Normally, 
the mass of distribution in the MA plot is expected to be concentrated along the M = 0 axis
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showed interaction with TCF4, NOTCH1 and WNT 
while NCOA1 and PDZK1 interacted with ESR1 and 
ESR2 potential biomarker proteins. ANXA1 was also 
associated with the CCL5, CXCR 10 and CXCL8 family 
of cytokines. The network analyzer was used to analyze 
the topological properties of the network. It also helped 
in classifying and improving the network performance 
(Fig. 4). The disease gene mapping of target genes using 
CTD showed that more than 50 genes have a functional 
relation with the source/seeder genes in breast cancer 
(Fig. 5). In gene enrichment analysis, the targeted genes 
were selected based on fold change and a p-value cut-off 
(< 0.05). The analysis revealed significant enrichment of 
these genes with mTOR signaling pathway, TGF-β signal-
ing pathway, P13-AKT signaling pathway, insulin signal-
ing pathway, thyroid signaling pathway and complement 

coagulation cascade (Table  4). The transcription factors 
identified were RBPJ, NHLH1, HENMT1, PHOX2A, 
CACD and ISL2. The transcription factors (TFs) NHLH1 
and HENMT1 showed 50% abundance with known 
breast cancer genes (Fig. 5).

Pathway modeling
The gene signatures isolated were further studied to 
understand their role in the progression of breast can-
cer and their underlying molecular mechanism. The sig-
nature genes were analyzed for their interaction with 
other proteins in breast carcinogenesis through recon-
struction of a network. The pathways involved in the 
progression of breast cancer were the MTOR signaling 
pathway, estrogen signaling pathway, P13-AKT signal-
ing pathway, TGF-β signaling pathway and the insulin 

Fig. 2 RNA degradation plots produced by plotAffyRNAdeg representing the quality of RNA and its severity of degradation
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signaling pathway. The source genes interact with other 
target genes through these signaling pathways leading to 
the occurrence of breast cancer. The network shows the 
heterogeneous nature of breast cancer which is the major 
obstacle in defining therapies with desirable outcomes 
(Fig. 6).

Drug‑gene network analysis
For drug-gene network analysis the toxicogenomic 
approach was used to further investigate the existing 
treatment options for breast cancer therapy. This was 
done to better understand the disease etiology. The pub-
licly available database CTD identified 65 drugs that 
interacted with these signature genes. In total, 57 target 
drugs were FDA approved (Table  5). These drugs were 
found to interact with signature genes that are involved 
in the progression of breast cancer (Fig. 7).

Discussion
Due to its recurrence and heterogeneous nature, breast 
cancer is the leading cause of death in women globally. 
This calls for a better understanding of the molecular 
mechanisms of breast cancer in order to improve diagno-
sis and management.

This study focuses on the identification of several gene 
signatures, their functional annotation, potential pro-
tein–protein interactions and reconstruction of biologi-
cal pathways for a better understanding of the disease. 
The differential expression analysis revealed eight gene 
signatures out of 50 DEGs based on physicochemical and 
functional studies that play a role in breast carcinogen-
esis. ID4, NOCA1, RHEB, ANXA1, AKR1C2, PDZK1, 
PLAUR and SLPI are the identified DEGs out of which 
five are upregulated and three are downregulated. The 
gene ontology of these genes showed functional enrich-
ment in cellular communication, signal transduction, 
protein metabolism, transport and steroid hormone 
receptor signaling as well as essential roles in several 
important signaling pathways such as the MTOR, TGF-B, 
P13-Akt and insulin. These pathways have been studied 
for their role in the progression and occurrence of several 
cancers. ID4 belongs to a family of four helix-loop-helix 
(HLH) transcriptional regulators, termed as inhibitors of 
differentiation (ID) proteins. These proteins are involved 
in the regulation of several cell processes such as differen-
tiation, transcription and cell cycle progression. Emerg-
ing evidence has shown a proto-oncogenic role of ID4 
in basal like breast cancer (BLBC). An overexpression of 

Table 2 The differentially expressed breast cancer associated genes curated from Pubmed

Sr. No. Probe ID Gene ID Uniprot_id Pubmed count Protein name Reference link

1 11721688_at ID4 ID4_HUMAN 50 Inhibitor of DNA binding 4, HLH 
protein (ID4)

https ://pubme d.ncbi.nlm.nih.
gov/?term=ID4+and+breas 
t+cance r

2 209106_at NCOA1 NCOA1_HUMAN 106 Nuclear receptor coactivator 1 
(NCOA1)

https ://pubme d.ncbi.nlm.
nih.gov/?term=ncoa1 
+and+breas t+cance r

3 211924_s_at PLAUR UPAR_HUMAN 189 Plasminogen activator, urokinase 
receptor (PLAUR)

https ://pubme d.ncbi.nlm.
nih.gov/?term=plaur 
+and+breas t+cance r

4 1555780_a_at RHEB RHEB_HUMAN 14 Ras homolog enriched in brain 
(RHEB)

https ://pubme d.ncbi.nlm.nih.
gov/?term=rheb+and+breas 
t+cance r

5 205380_at PDZK1 PDZ1I_HUMAN 26 PDZ domain containing 1 (PDZK1) https ://pubme d.ncbi.nlm.
nih.gov/?term=pdzk1 
+and+breas t+cance r

6 11716033_at SLPI SLPI_HUMAN 14 Secretory leukocyte peptidase inhibi-
tor (SLPI)

https ://pubme d.ncbi.nlm.nih.
gov/?term=slpi+and+breas 
t+cance r

7 11729101_a_at AKR1C2 Q1KXY7_HUMAN 36 Aldo–keto reductase family 1 mem-
ber C2 (AKR1C2)

https ://pubme d.ncbi.nlm.
nih.gov/?term=akr1c 
2+and+breas t+cance r

8 201012_at ANXA1 ANXA1_HUMAN 52 Annexin A1 (ANXA1) https ://pubme d.ncbi.nlm.
nih.gov/?term=anxa1 
+and+breas t+cance r

https://pubmed.ncbi.nlm.nih.gov/?term=ID4+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=ID4+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=ID4+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=ncoa1+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=ncoa1+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=ncoa1+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=plaur+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=plaur+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=plaur+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=rheb+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=rheb+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=rheb+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=pdzk1+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=pdzk1+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=pdzk1+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=slpi+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=slpi+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=slpi+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=akr1c2+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=akr1c2+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=akr1c2+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=anxa1+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=anxa1+and+breast+cancer
https://pubmed.ncbi.nlm.nih.gov/?term=anxa1+and+breast+cancer
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Fig. 3 Cluster analysis of breast cancer related differentially expressed genes. Blue represents small distance and red shows large distance. Lines 
indicate the cluster boundaries in the level of the tree

Table 3 miRNA targets of breast cancer related genes

Uniprot id Gene symbol miRNA Target score Total miRNA 
hits

Structure of predicted duplex

NCOA1_HUMAN NCOA1 hsa-miR-650 99 205 AGG AGG CAG CGC UCU CAG GAC 

ID4_HUMAN ID4 hsa-miR-203a-3p 98 191 GUG AAA UGU UUA GGA CCA CUAG 

RHEB_HUMAN RHEB hsa-miR-4520-3p 96 74 UUG GAC AGA AAA CAC GCA GGAA 

ANXA1_HUMAN ANXA1 hsa-miR-1185-1-3p 93 41 AUA UAC AGG GGG AGA CUC UUAU 

PDZ1I_HUMAN PDZK1 hsa-miR-15b-3p 92 41 CGA AUC AUU AUU UGC UGC UCUA 

UPAR_HUMAN PLAUR hsa-miR-942-5p 92 43 UCU UCU CUG UUU UGG CCA UGUG 

Q1KXY7_HUMAN AKR1C2 hsa-miR-185-5p 90 108 UGG AGA GAA AGG CAG UUC CUGA 

SLPI_HUMAN SLPI hsa-miR-3173-3p 72 8 AAA GGA GGA AAU AGG CAG GCCA 
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this gene is observed in this subtype of breast cancer and 
is correlated with the expression of TP53 protein which is 
involved in higher grade and metastasis risk. This has led 
it to be a poor prognostic marker of BLBC as the prolifer-
ation of BLBC cell lines require an overexpression of ID4 
[26]. The gene network analysis also revealed the inter-
action of ID4 with several other proteins such as TCF, 
WNT, TP53 and NOTCH1. This supports the previous 
evidence of correlation of ID4 with TP53 in the prolifera-
tion of BLBC.

The overexpression of nuclear receptor coactiva-
tor 1 (NCOA1) has also shown a positive correlation 
with disease metastasis and recurrence that resides 
in a subset of breast cancers. This gene belongs 
to the p160 SRC family and interacts with certain 
nuclear receptors and transcription factors (TFs) 
playing important roles in growth, development, 

reproduction and metabolism as well as in cancer. 
NCOA1 has been associated with HER2 expres-
sion, metastasis, disease recurrence and poor sur-
vival and overexpression in 19–29% of breast tumors 
[27]. Other interacting proteins identified through 
network analysis showing crosstalk with NCOA1 
are the ESR and PPAR (Fig.  5). The pathway analy-
sis also clarifies the role of NCOA1 in proliferation 
and metastasis of breast cancer by interaction with 
these proteins (Fig.  7). Another source protein iden-
tified through differential expression analysis is PDZ 
domain containing 1 (PDZK1) which is an adaptor 
protein expressed in the proximal tubules of kidney 
and has a pivotal role in lipid metabolism. However, 
this protein is thought to be responsive to estrogen in 
breast cancer cell lines (mcf-7). A significant correla-
tion between 17B-estradiol plasma levels and PDZK1 

Fig. 4 Gene network of breast cancer related differentially expressed genes with 207 nodes and 226 edges. Red and blue nodes indicate the breast 
cancer associated potential biomarkers while yellow nodes represent the non-breast cancer target proteins
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Fig. 5 Transcription factors for breast cancer associated gene signatures involved to alter gene expression in a host cell to promote breast cancer 
resistance and progression

Table 4 Pathway enrichment and gene ontology of breast cancer related DEGs

Category Term Count p‑value

GOTERM_BP_FAT Positive regulation of cell differentiation 4 3.9 × 10−3

GOTERM_BP_FAT Gliogenesis 3 4.1 × 10−3

GOTERM_BP_FAT Rhythmic process 3 6.9 × 10−3

GOTERM_BP_FAT Cellular lipid metabolic process 4 7.1 × 10−3

GOTERM_BP_FAT Estrous cycle 2 7.1 × 10−3

GOTERM_BP_FAT Epithelium development 4 7.4 × 10−3

GOTERM_BP_FAT Negative regulation of hydrolase activity 3 1.1 × 10−2

GOTERM_BP_FAT Response to drug 3 1.2 × 10−2

GOTERM_BP_FAT Regulation of oligodendrocyte differentiation 2 1.2 × 10−2

GOTERM_BP_FAT Reproductive structure development 3 1.2 × 10−2

GOTERM_BP_FAT Gland development 3 1.2 × 10−2

GOTERM_BP_FAT Prostaglandin metabolic process 2 1.3 × 10−2

GOTERM_BP_FAT Lipid metabolic process 4 1.4 × 10−2

GOTERM_BP_FAT Neurogenesis 4 1.8 × 10−2

GOTERM_BP_FAT Prostate gland development 2 1.9 × 10−2

GOTERM_BP_FAT Positive regulation of cell death 3 2.5 × 10−2

GOTERM_CC_FAT Extracellular exosome 5 5.9 × 10−3

GOTERM_CC_FAT Extracellular vesicle 5 6.0 × 10−3

GOTERM_CC_FAT Membrane-bound vesicle 5 1.5 × 10−2

GOTERM_CC_FAT Extracellular region 5 3.8 × 10−2

GOTERM_CC_FAT Extrinsic component of membrane 2 8.8 × 10−2

GOTERM_MF_FAT Receptor binding 4 2.2 × 10−2

GOTERM_MF_FAT Enzyme binding 4 3.8 × 10−2

GOTERM_MF_FAT Protein dimerization activity 3 9.2 × 10−2
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mRNA expression has been shown in ER-α (+) breast 
tumors providing a link between Er-α and PDZK1 
[28]. A potential candidate involved in the indirect 
link of this association is insulin-like growth factor-1 
(IGS-1R). The gene ontology studies of these genes 
also revealed enrichment of these genes in the insulin 
signaling pathway, suggesting a link of this pathway in 
cell proliferation of breast tumors.

Ras human enriched in brain (Rheb) is a small GTP-
binding protein and a well-known regulator of mTOR. 
mTOR plays a pivotal role in cell proliferation, aging, 
protein synthesis and autophagy. Recent evidence has 
suggested a hyperactivity in Rheb-mTORC1 signal-
ing axis in several human carcinomas [29]. Evidence 

also suggest an elevated expression of RHEB in epi-
thelial cells of fibroadenomas providing an association 
of RHEB with insulin/AKT/TOR signaling pathway in 
benign tumor development [30]. The pathway analysis 
has also shown association of Rheb with these proteins 
suggesting its important role in cell cycle control and 
cell growth. Secreted proteins play a pivotal role in sev-
eral types of cancer metastasis including breast tumors. 
One of the secreted proteins identified through differ-
ential analysis is SLPI which has a role in the progres-
sion and development of tumors. Several tumors have 
shown elevated gene expression levels of SLPI such as 
ovarian and lung cancer. A recent study has identified 
SLPI as a new target for anti-metastatic therapies due 

Fig. 6 Pathway analysis. Integrated gene signaling pathways involved in the progression of breast cancer. Gene signatures were mapped on KEGG 
pathways for signaling and metabolic reconstruction
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to its pro-metastatic part of secretome for breast can-
cer, chiefly for TNCs [31]. The two aldo–keto reductases 
AKR1C1 and AKR1C2 belong to the super family of 
AKR1C1 and are involved in progesterone metabolism. 
The metabolites of progesterone are basically involved 
in suppression of cell proliferation and adhesion. In 
tumorous breast tissues the expression of AKR1C1 
and AKR1C2 is reduced promoting tumor growth and 
progression [32]. The association of over-activation of 
PLAUR (uPAR) with increased aggressive carcinoma 
is also well-studied. A correlation has been observed 
between HER2 and uPAR mRNA in disseminated 
tumors suggesting a cross talk between HER2 and uPAR 
signaling pathways causing recurrence or metastasis 
[33]. Moreover, Annexin A1 (AnxA1) is also a candidate 
regulator of oncogenic switch during which cancer cells 
change their phenotype from epithelial to migratory, 
mesenchymal-like. AnxA1 is an actin regulatory protein 
and its overexpression is associated with the BLBC sub-
type. It has a pro-angiogenic role in vascular endothelial 
cells, tumor growth and metastasis and is also involved 
in the regulation of TGFβ signaling. Evidence suggests 
AnxA1 as an additional marker in discriminating BLBC 
diagnosis from other subtypes [34]. The drug-gene net-
work analysis revealed that several common drugs have 
shown interactions with these signature genes such as 
Tamoxifen, Cisplatin, Diazepam, Aspirin, Hydrocorti-
sone, etc. opening the platform for repurposing of these 
drugs to better manage this disease.

Table 5 Drug targets of identified differentially expressed 
genes

Gene Drugs Drug Bank ID FDA approval

PDZK1 Afimoxifene DB04468 Investigational

PDZK1 Raloxifene hydrochloride DB00481 Investigational

PDZK1 Urethane DB04827 Removed

PDZK1 Valproic acid DB00313 Approved

PDZK1 Ciglitazone DB09201 Experimental

PDZK1 Estradiol DB00783 Approved

PDZK1 Fenofibric acid DB13873 Approved

PDZK1 Ormosil DB00742 Approved

PDZK1 Polyethylene glycols DB09287 Approved

PDZK1 Zoledronic acid DB00399 Approved

ID4 Acetaminophen DB00316 Approved

ID4 Belinostat DB05015 Approved

ID4 Dorsomorphin DB08597 Experimental

ID4 Doxorubicin DB00997 Approved

ID4 Estradiol DB00783 Approved

ID4 Panobinostat DB06603 Approved

ID4 Tamoxifen DB00675 Approved

ID4 Valproic acid DB00313 Approved

RHEB Cisplatin DB00515 Approved

RHEB Lonafarnib DB06448 Investigational

RHEB Tipifarnib DB04960 Investigational

SLPI Copper DB09130 Approved

SLPI Ormosil DB00742 Approved

SLPI Polyethylene glycols DB09287 Approved

SLPI Doxorubicin DB00997 Approved

SLPI Cyclosporine DB00091 Approved

SLPI Cisplatin DB00515 Approved

SLPI Aspirin DB00945 Approved

AKR1C2 Aspirin DB00945 Approved

AKR1C2 Cloxazolam DB01553 Experimental

AKR1C2 Diazepam DB00829 Approved

AKR1C2 Estazolam DB01215 Approved

AKR1C2 Flurbiprofen DB00712 Approved

AKR1C2 Glipizide DB01067 Approved

AKR1C2 Indomethacin DB00328 Approved

AKR1C2 Meclofenamic acid DB00939 Approved

NCOA1 Tamoxifen DB00675 Approved

NCOA2 Calcitriol DB00136 Approved

NCOA3 Rifampin DB01045 Approved

NCOA4 Troglitazone DB00197 Approved

NCOA5 Alitretinoin DB00523 Approved

PLAUR Urokinase DB00013 Approved

PLAUR Tenecteplase DB00031 Approved

PLAUR Anistreplase DB00029 Approved

PLAUR Filgrastim DB00099 Approved

PLAUR Interferon gama-1b DB00011 Approved

PLAUR Reteplase DB00015 Approved

PLAUR Alteplase DB00009 Approved

ANXA1 Desonide DB01260 Approved

Table 5 (continued)

Gene Drugs Drug Bank ID FDA approval

ANXA1 Prednisone DB00635 Approved

ANXA1 Trastuzumab DB00072 Approved

ANXA1 Loteprednol etabonate DB14596 Approved

ANXA1 Desoximetasone DB00547 Approved

ANXA1 Hydrocortisone DB00741 Approved

ANXA1 Hydrocortamate DB00769 Approved

ANXA1 Triamcinolone DB00620 Approved

ANXA1 Prednisolone DB00860 Approved

ANXA1 Amcinonide DB00288 Approved

ANXA1 Flumethasone pivalate DB00663 Approved

ANXA1 Betamethasone DB00443 Approved

ANXA1 Methylprednisolone DB00959 Approved

ANXA1 Rimexolone DB00896 Approved

ANXA1 Halobetasol propionate DB00596 Approved

ANXA1 Dexamethasone DB01234 Approved

ANXA1 Prednicarbate DB01130 Approved
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Conclusion
This study has opened new insights for potential tar-
gets for breast cancer, their relations with other signal-
ing proteins and their involvement in the progression 
and development of breast cancer through cross talk. 
The pathway analysis further clarifies the role of several 
genes and contributes to the efficient management of 
this disease.
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