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Abstract

Data sharing, integration and annotation are essential to ensure the reproducibility of the analysis and interpretation
of the experimental findings. Often these activities are perceived as a role that bioinformaticians and computer
scientists have to take with no or little input from the experimental biologist. On the contrary, biological researchers,
being the producers and often the end users of such data, have a big role in enabling biological data integration. The
quality and usefulness of data integration depend on the existence and adoption of standards, shared formats, and
mechanisms that are suitable for biological researchers to submit and annotate the data, so it can be easily
searchable, conveniently linked and consequently used for further biological analysis and discovery. Here, we provide
background on what is data integration from a computational science point of view, how it has been applied to
biological research, which key aspects contributed to its success and future directions.
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Introduction
Data driven biological research has made data integra-
tion strategies crucial for the advancements and discov-
ery in a plethora of fields (e.g. genomics, proteomics,
metabolomics, environmental sciences, clinical research
to name a few) [1-6]. Technically, solutions for data inte-
gration have been developed and applied in both corpo-
rate and academic sectors. When it comes to biological
research, there are different interpretations and levels of
data integration people seem to consider [7—14], ranging
from genomic data to protein-protein interactions.
Together with data production, there is no doubt that
data management, storage and consequently retrieval,
analysis and interpretation are at the core of any biologi-
cal research project. Moreover, the ability to have access
to the actual data sets used in a particular study is often
crucial for reproducibility and expansion of such study,
hence the emphasis in recent years on Open Science and
the various initiatives associated [15-21]. Noticeably, in
biological research, the difficulties associated with data
integration have only expanded with the advent of high
throughput technologies [3, 22, 23]. Anyone working with
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Next Generation Sequencing (NGS) faces challenges asso-
ciated with a variety of aspects this type of data brings,
one of the major being: the volume of the data [24, 25].

Here, we refer to data integration as the computational
solution allowing users, from end user (GUI) to power
users (API), to fetch data from different sources, com-
bine, manipulate and re-analyse them as well as being
able to create new datasets and share these again with the
scientific community.

With this definition in mind, it is clear that data inte-
gration solutions are imperative for the advancement of
research in biological sciences as well as the mecha-
nisms to make such processes traceable, shareable hence
“integrable” [26—28]. Here, we provide an overview of
the strategies most commonly adopted by the biologi-
cal research community, current challenges and future
directions.

Key concepts and terminology

Data integration should not just rely on software engi-
neers and computational scientists, but needs to be driven
by the actual users whose communities need to define,
adopt and use standards, ontologies and annotation best
practice. Therefore, it is particularly important for the
biological research community to get acquainted with
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the conceptual basis of data integration, its limitations,
challenges and actual terminology.

In order to familiarise the experimental biology commu-
nity of readers, in Table 1 we present key concepts, defini-
tions and terms used by bioinformaticians and computer
scientists.

Review

In computational sciences the theoretical frameworks for
data integration have been classified into two major cat-
egories namely “eager” and “lazy” [29, 30]. The difference
between the two approaches is the way the data get inte-
grated. In the eager approach (warehousing), the data are

Table 1 Terminology
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being copied over to a global schema and stored in a cen-
tral data warehouse; whereas in the lazy approach the
data reside in distributed sources and are integrated on
demand based on a global schema used to map the data
between sources.

Each of the two main categories of data integration has
to deal with its own challenges in order to provide the
user with a unified view of the data. In the eager approach,
researchers face challenges to keep data updated and con-
sistent, and protect the global schema from having cor-
rupted data [31, 32]. In the lazy approach, data are queried
at sources and the scientific community is trying to find
ways of improving the answering query process [33-38]
and source completeness [36, 37, 39, 40]. Which approach

Schema
Database

Sources

Data Integration

Data Standards
Data Formats

Data Warehousing

Federated Databases

Linked Data

Ontology

lled Vocabulary

Unique Identifier

Metadata

Annotation
Automatic Annotation
Manual Annotation
GUI

API

Ux

Visualisation Tools

A structured and “queryable” way of storing data
A single or collection of schemata

A number of databases that contain data. Data that reside in each source can either duplicate and/or
complement data from other sources

The process of combining data that reside in different sources, to provide users with a unified view of such
data

Agreements on representation, format, and definition for common data
A structured way to represent data and metadata in a file

Model for integrating data where the data from different sources reside on a central repository (aka data
warehouse)

Model for integrating data where the data reside on the original sources and users are provided with a
unified view of the data based on mapping mechanisms of the information

The network of interlinked data that is available on the web. It is used to automatically share semantically
rich information and represents the biggest attempt to convert significant amounts of human knowledge
across all fields in a computer readable format

A structured way of describing data, often presented in a computer-readable format. In bioinformatics,
ontologies are sets of unambiguous, universally agreed terms used to describe biological phenomena and
“entities”, their properties and their relationships

A collection of terms for describing a certain domain of interest

A unique representation for a biological entity (molecule, organism, ontology term, etc). Usually an
alphanumeric string that is used to refer to this entity and distinguishes it from others (much like ID or
passport number in humans).

Data describing data, i.e., additional information (e.g., a comment, explanation, attributes, etc.) for a specific
biological entity or process. As an example, in the context of an ontology, this is used to specify significant
properties of the ontology

The process of attaching relevant information (metadata) to a raw biological entity

Automatic means that the annotation is being done by computer software (often by transferring
information from a source to another). This is a way of producing a large amount of metadata

As opposed to automatic annotation, manual means that an actual individual does it

Graphical User Interface. Is the way that a user interacts with a computer by using graphical icons and
visual indicators such as buttons, forms etc. In the scope of this paper we are using the term GUI to refer to
interfaces that allow biologists to search/read/edit integrated biological data

Application Programming Interface. Set of tool and protocols that a power user can use in order to
automatically gain access to functionality and/or data that have been developed/gathered by another
individual/organisation

User eXperience. The process of improving user satisfaction by focusing on the usability of a given product.

Applications that help biologists view the data in a more human-friendly way (e.g., Cytoscape for visualising
complex networks) like 3D or graph representations of the data
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should be used and when depends on amount of data, who
owns them and the existing infrastructure.

In biology we see a diversity of implementations across
these two approaches being used at a variety of levels and
forms like data centralisation, federated databases [41, 42]
and linked data [43]. Figure 1 shows the most common
schemata used to integrate data in biology.

UniProt [44] and GenBank [45] are examples of cen-
tralised resources (Fig. 1-Data Centralisation), whereas
Pathway commons [46] collects pathways from different
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databases and stores them to a shared repository that
can be used to query and analyse pathway information
(Fig. 1-Data Warehousing). Datasets integration can also
be made by in-house workflows accessing distributed
databases and downloading data to a local repository
(Fig. 1-Dataset Integration). ExPASy [47] is the SIB Bioin-
formatics Resource Portal through which the user can
access databases and tools in different areas of life sci-
ence (Fig. 1-Hyperlinks). Database links are crucial for
interoperability and several efforts have been done in
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Fig. 1 Data integration methodologies. This figure illustrates six major types of data integration methodologies in biology
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this context [48]. Regarding the federated database model
(Fig. 1-Federated Databases), the Distributed Annotation
System (DAS) [49] represents a valuable example. DAS is
a client-server system used to integrate and display in a
single view annotation data on biological sequences resid-
ing over multiple distant servers. In this case, a translation
layer is needed to achieve data integration among hetero-
geneous databases. There are various ways to do this but
in general it refers to ways to transform the data from
the database to a common format so they can be inter-
preted in the same way from a mapping service. As for the
linked data integration (Fig. 1-Linked Data), the services
offered are graphical interfaces (GUI) that provide the
user with hyperlinks connecting related data from mul-
tiple data providers in a large network of Linked Data.
BIO2RDF [43] is an example of such integration system.
Data integration in biological research has its chal-
lenges associated to a variety of factors such as standards
adoption or easy conversion between data/file formats [2].
Figure 2 illustrates a simplified schematic view of the
current state of biological research data integration com-
ponents. Various attempts to integrate the data rely on
translation layers that, by applying agreed standards,
transform the data in a unified format in order to integrate
them. In other words, different formats for the same type
of data (e.g. NGS) need to be “translated” into a unified
format by applying shared rules. On top of the integra-
tion layer, there are various GUIs that make it possible to
utilise (download, analyse, represent, etc) the integrated
data. Furthermore, there is a myriad of resources and visu-
alisation tools generated that fail to comply with standards
and/or are not compatible with each other [50] On the
other hand, controlled vocabularies and ontologies to ease
data integration are available for an increasing number of
biological domain areas. Some of them can be found at
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Fig. 2 Current state. This figure illustrates a simplified view of the
current state of biological data and tools
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the websites of the OBO (Open Biological and Biomedical
Ontologies) foundry [51], the NCBO (National Center for
Biomedical Ontology) BioPortal [52], and the OLS (Ontol-
ogy Lookup Service). One successful example is the XML-
based proteomic standards defined by the HUPO-PSI
(Human Proteome Organisation-Proteomics Standards
Initiative) consortium (see Table 2). The rest of the paper
will discuss key aspects of standards: ontologies, data for-
mats, identifiers, reporting guidelines, consortiums and
standard initiatives which will be followed by a section on
visualisation.

Standards

As mentioned above, one of the most important fac-
tors for the biological field to thrive is to standardise
the data. In computational science a similar problem was
encountered for the web and specifically with the way that
browsers parse web pages. This was solved by agreeing on
W3C standards [53] so that all the browsers are forced to
comply otherwise they may result in poor user experience
and they risk losing market share.

In biology there are many different ways of represent-
ing similar data and this makes the data harder to be
integrated and processed to obtain unified views of such
data. Gene naming is an example of poor uniformity in
data representation. Despite full guidelines were issued in
1979 to adopt gene nomenclature standards (see [54]), an
assortment of alternate names is still in use across the sci-
entific literature and databases, posing a challenge to data
sharing. When it comes to biological research, it is crucial
to create (when non existing), adopt and implement stan-
dards. Without these it is (nearly) impossible to achieve
data integration [55, 56].

So what do we mean by standards? Standards can be
defined as an agreed compliant term or structure to rep-
resent a biological entity. Entities are all types of units
of biological information. For example we use T, G, A, C
as a standard way to refer to the nucleotides that make
the DNA, and aa (for amino acids) represented usually
by one letter, and consequently, a string of letters to rep-
resent a DNA or protein sequence. However, a protein
might be known in the scientific literature and referred by
researchers by a variety of names, synonyms and abbrevi-
ations.

So, which standards exist, who defines them and how
are these working? Lots of standard initiatives and efforts
seem to exist, sometimes redundant, often non driven by
the end users communities. It is out of the scope of this
paper (and probably a never ending exercise) to review
all of them, which do proliferate but not necessarily in
harmonising ways. A snapshot of the variety of standards
for metadata can be found at the DCC website [57] and
BioSharing [58] as an example of the point we are mak-
ing. Table 2 reports a list of standard initiatives along with
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Table 2 List of data standards initiatives
Acronym Name Goal URL PMID
OBO The Open Biological and Establish a set of principles for ontology http://www.obofoundry.org 17989687
Biomedical Ontologies development to create a suite of orthogonal
interoperable reference ontologies in
the biomedical domain
CDISC Clinical data interchange Establish standards to support the acquisition,  http://www.cdisc.org 23833735
standards consortium exchange, submission and archive of
clinical research data and metadata
HUPO-PSI Human Proteome Organisation-  Defines community standards for data http://www.psidev.info 16901219
Proteomics Standards Initiative representation in proteomics to facilitate
data comparison, exchange and verification
GAGH Global Alliance for Genomics Create interoperable approaches to catalyze http://genomicsandhealth.org/ 24896853
and Health projects that will help unlock the great
potential of genomic data
COMBINE  Computational Modeling Coordinate the development of the various http://co.mbine.org/ 25759811
in Biology community standards and formats for
computational models
MSI Metabolomics Standards Define community-agreed reporting http://msi-workgroups.sourceforge.net 17687353
Initiative standards, which provided a clear description
of the biological system studied and
all components of metabolomics studies
RDA Research Data Alliance Builds the social and technical bridges that https://rd-alliance.org

enable open sharing of data across multiple

scientific disciplines

their primary goal, URL and key reference in the omics
field.

Standards facilitate data re-use. They make data sharing
easier, saving overheads and losses of time in data loading,
conversion, getting systems to work properly with data.
They help overcome interoperability difficulties across
different data formats, architectures, and naming conven-
tions, and at infrastructure level, enabling access systems
to work together [59-62]. Absence of standards means
substantial loss of productivity and less data available to
researchers [63].

Figure 3 illustrates a schematic view of an ideal state
of biological research data integration components. This
figure emphasises on the importance of standards that is
the base of all the top layers of the infrastructure. Without
solid foundations, it is very difficult to build and main-
tain robust tools for the layers above. The arrows point
out that the data can be used across all layers and this
can go both ways. For example, in an ideal state, all bio-
logical data would be integrated from various databases
across the world and biologists will be able to use a GUI
to locate the entity of their interest. Then, they can use
a visualisation tool to have a better representation of
the entity by using the same data previously identified
through the GUI (like a unique identifier). Furthermore,
the biologist will be in a position to annotate or edit the
data directly from the visualisation tool, which in turn
will be able to commit the changes to the integrated

service and from then on go all the way down the pyra-
mid until the data in the proper database get edited and
annotated.

Standards are therefore key to the data sharing process
since they describe the norms which should be adopted
to facilitate interchange and inter-working of information,
processes, objects and software. Thus data resources play
a major role not just in data management, integration,
access, and preservation, but also for providing adequate
support to research communities.

Ontologies

Ontologies have been proliferating in biological research,
and their importance underlined several times [64—67]
also in the specific context of data integration [68].
In order to bring some coordination and consolidation
to the proliferation of ontologies across the biological
and biomedical research fields, The Open Biological and
Biomedical Ontologies (OBO) got together. OBO is a
collaborative experiment involving developers of science-
based ontologies who are establishing a set of principles
for ontology development with the goal of creating a
suite of orthogonal interoperable reference ontologies in
the biomedical domain. Biological researchers can get
involved and provide feedback by getting into the dis-
cussion fora OBO provides. Currently there are ten OBO
foundry ontologies and more than 120 candidate ontolo-
gies or other ontologies of interest [51].
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Fig. 3 Ideal state. This figure illustrates a simplified view of an ideal state of biological data and tools

These efforts need the direct involvement of the actual
biologists when it comes to the adoption and implemen-
tation of using such ontologies, ensuring these are known
and disseminated across communities. Other important
initiatives are, the NCBO (National Center for Biomedi-
cal Ontology) BioPortal [69, 70], and the OLS (Ontology
Lookup Service) [71].

With a set of unique common compliant standards in
place, it will be possible to create tools to integrate the
data on the web using an existing infrastructure like linked
data. This will enable querying multiple sources without
having to re-invent integration techniques for the inte-
gration of each source. As an example, one of the efforts
currently trying to attempt this is Bio2RDF [43]. This is a
major effort to integrate biological data using the linked
data infrastructure. So far there are no tools that can
utilise these data directly but they are mainly accessible via
complex queries or low level GUIs.

Formats

Data formats are the concrete way we structure and repre-
sent biological information in a file. They are particularly
relevant to those who deal with large amount of informa-
tion such that generated by high throughput experiments.
Indeed, a scientist interested in a single or a few genes at
a time may extract information about them by manually
“parsing” the literature or free-text (i.e. non formatted)
documents. The need for storing biological data in for-
matted files arose from the need for using computers to
analyse them. The amounts of genomics and proteomics
data, which cannot be manually analysed element by ele-
ment, are exponentially increasing and the adoption of

commonly agreed formats to represent them in computer
readable files is nowadays of utter importance. Histori-
cally, the scarcity of well structured data standards and
schemas, caused the flourishing of many different for-
mats even to represent the same type of data despite the
adoption of standards in file formats would be essen-
tial to data exchange and integration. Funnily, the Roslin
Bioinformatics Law’s First Law declaims: “The first step in
developing a new genetic analysis algorithm is to decide
how to make the input data file format different from all
pre-existing analysis data file formats” [72].

For the benefit of data integration though, it would be
ideal to have well-structured data across few basic formats
that would be easily computer readable and therefore eas-
ily integrated. In the specific case of NGS data, the lag
between the emerging high-throughput screening tech-
nologies and the adjusting of the scientific community to
settle on a standard format, means time and effort spent
on converting raw files across multiple sequencing plat-
forms to make these compatible [73]. Currently, in NGS
there are no really “standards” that people adhere to, but
a set of commonly used formats (FASTA/Q, SAM, VCE,
GFF/GTE, etc.). There are descriptor standards like MIGS
[74], but these might not be generally adopted. More in
general, today an exhaustive “atlas” of the formats used
in bioinformatics cannot be found on the Internet. One
partial list is available at http://genome.ucsc.edu/FAQ/
FAQformat.html and the description of many formats can
be found in the online forum BioStar [75].

A good format needs to take into account the data them-
selves (for example the DNA sequence of a gene) and the
so called metadata, i.e. additional information describing
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the data (e.g. gene name, taxonomy information, cross ref-
erence to other resources, etc.) and has to adopt strategies
(“tricks”) to make metadata unequivocally distinguishable
from data by a computer program. This goal is achieved
in different ways by different bioinformatics resources,
resulting in the large number of formats we observe today.
However, despite the large variety of computer readable
formats, we realised that the most commonly used ones
are ascribable to four main different classes: 1) tables 2)
FASTA-like 3) GenBank-like 4) tag-structured. Table 3
reports examples for each of these classes.

In table formats, data are organised in a table in which
the columns are separated by tabs, commas, pipes, etc.,
depending on the source generating the file. FASTA-like
files utilise, for each data record, one or more “defi-
nition” or “declaration lines”, which contain metadata
information or specify the content of the following lines.
Definition/declaration lines usually start with a special
character or keyword in the first position of the line - a
“>" in FASTA files or a “@” in fastq or SAM files - fol-
lowed by lines containing the data themselves (Fig. 4). In
some cases, declaration lines may be interspersed with
data lines. This format is mostly used for sequence data.
In the GenBank-like format, each line starts with an
identifier that specifies the content of the line (Fig. 5).
Tag-structured formatting uses “tags” (“<”, “>”, “{”, “}",
etc.) to make data and metadata recognisable (Fig. 6)
with high specificity. Tag-structured text files, especially
XML and JSON, are being increasingly employed as data
interchange formats between different programming lan-
guages.

There are also examples of data files using different rep-
resentations for data and metadata. This means that two
or more format classes may be used in the same data
file. An example is represented by SAM files, which con-
tain both GenBank-like lines (for the metadata) and table
columns (for the data) as shown in Fig. 7.

Should any of these four data representation classes be
preferred over the others? Despite we observe an increas-
ing use of XML and some authors propose to adopt XML
for biological data interchange between databases and

Table 3 Mostly commonly used data formats in bioinformatics

Page 7 of 16

other sources of data [76], we believe that there is not
an ultimate answer. There are text formats that better
suit some specific kind of data and specific computational
requirements and purposes. For example, it is difficult
to imagine how macromolecule X-ray or NMR coordi-
nates and related annotation, currently stored in PDB files,
could fit into the FASTA-like format. On the other hand,
if one has to parse big sequence files, the FASTA format,
with a single line annotation, will cause them to have a
smaller size than differently formatted files and will allow
parsing them with just a few lines of code. Notice that
some formats (e.g. SAM) can be compressed into a binary
version (BAM) for intensive data processing.

Therefore, we believe that the solution is not to urge sci-
entists to conform to a unique “optimal” format but rather
to identify a few operational formats and make database
and tool developers aware of the importance of sticking to
them.

For integration purposes, the scientific community of
database and tool developers has begun to adopt some
good practices in data file formatting. One example is rep-
resented by the FGED Society (http://fged.org/) formed
at a meeting on Microarray Gene Expression Databases
(EBL Hinxton, 1999) with the goal, amongst the others, of
facilitating the adoption of standards for DNA microar-
rays and gene expression data representation. We believe,
however, that further efforts should be made in order
to achieve a more robust and systematic policy in all
the areas where data sharing is essential to utilise these
data to make new discoveries and the progress of science
possible.

The community of scientists concerned by data sharing
and integration, including us, should make the effort of
1) compiling a complete and structured (i.e. organised by
data type and purpose) list of the currently available for-
mats with their description and 2) developing guidelines
and recommendations for the adoption of standards in file
formatting, also discussing which data types fit into each
different text format and the related performance impli-
cations. This list and the guidelines, which might be inte-
grated in a resource such as BioSharing should encourage

Data format class ~ General data- Nucleotide sequence  Protein sequence  Structural Sequence Other data
interchange formats  data data data alignment types (PP, etc)
Tabl CSV, TSV BED; GFF GFF, Uniprot-GFF PSF(D), MMCIF(D) SAM(D)
FASTA-like FASTA; FASTQ FASTA, PIR SAM(M) Wig
GenBank-like GenBank; EMBL Uniprot-TEXT PDB, PSF(M), MMCIF(D) ~ CLUSTAL, MSF,
PHYLIP(D)
Tag-structured HTML; XML; JSON SBOL-XML Uniprot-XML; PSI MI-XML;
Uniprot-RDF/XML PSI-PAR

D = data; M = metadata. Formats appearing in more than one class are a mixture of classes
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Definition/
declaration lines

[ @SEQILMNO1:278:C4YJDACXX:7:1101:1180:1974 1:N:0:GGACCC|
TGGANTAATAAGTTTCTACCATTTATTATAGTCTGGTGGTGAAAACTAGT
[+ J
[[0<00%00BBFBF<FFFIIFFBFFFBFFFI1I1IFIBOOBFBBBBFF<BBB7 ]
[ @SEQILMNO1:278:C4YJDACXX:7:1101:1217:1990 1:N:0:GGACCC]
TAACCAATACTCATTCCTTCTTTGTGTGCAACCACAGTGTTCCATGTTCT
+ ]
BB<FBBFFFFFFBFFFFIIIIIIIBFFFIFBBFFFFFFFBFFFBFFIIFI

@SEQILMNO1:278:C4YJDACXX:7:1101:1593:1984 1:N:0:GGACCC

[ TAATAGAGACAATAGATCTAGCAGGTCTGTCATATTATAATAGAGACNNN

+

Data lines

[ BBBFFFFFBFBFFFIBFFIFIIIIIFIIIIIIIFIIIIIIFIBFFBFIFF ]

@SEQILMNO1:278:C4YJDACXX:7:1101:2286:1977 1:N:0:GGCCC

GTTATGCGCTGTCTGTTGTTATGCGTTGTCTGTTGTTATGCGTTGTCTGT

+

+

+

types (the raw sequence and the sequence quality values, respectively)

B<BFFFFFFFFFFFFFFB<BBFFFIIIIFFIFFIFFFIIIBFFIFFFIB<
@SEQILMNO1:278:C4YJDACXX:7:1101:2306:1998 1:N:0:GGACCC
GTTATGCGCTGTCTGTTGTTATGCGTTGTCTGTTGTTATGCGTTGTCTGT

B<BFFFFFFFFBFFIFIBBBBFFFFIIIIFIFFIFFFFFIFFIIIFIIFB
@SEQILMNO1:278:C4YJDACXX:7:1101:2842:1983 1:N:0:GGACCC
GAGAGGTAGACAACAGACAAAATGAGAGAGAGAGAGAGAGAGAGAGAGAN

BBBFFFFFFFFFFFIIIIFIIIIIIIFIFFFFIIIIIIIIIIIIIIIFFF

Fig. 4 Selected parts of a FASTQ file. In this format declaration lines start with two different characters (“@” and “+") corresponding to different data

database and tool developers to present information in a
way that a computer program can parse it, suggest that
they avoid inventing new computer readable formats but
rather comply with one of the existing ones, and only
accept new data, for storage purposes, that meet certain
formatting criteria. Such guidelines should be ambitious
and forward-looking enough to also advice scientists in
both academia and industry to keep in mind data repre-
sentation in developing high throughput technologies and
their information services.

The development of converters translating formats in a
unified form should be promoted as well. This would actu-
ally make it possible to combine the data across all the
formats. A rather isolated example of data format trans-
lation is represented by the PRIDE Converter [77], which
makes it easy to translate a large variety of input for-
mats into the unique XML [76, 78] format for proteomic
data submission to the PRIDE repository [79]. The PRIDE
Converter was designed to be suitable for both small
and large data submissions and has a very intuitive GUI
also for wet-lab scientists without a strong bioinformat-
ics background or informatics support. Format translation
faces problems especially with not well-structured data
that cannot be translated properly in a computer read-
able format and therefore rely on human manipulation of
the data in order to verify the correctness of the trans-
formation. In the case of NGS data, we rely on tools for
conversion between next generation sequencing data for-
mats, such as NGS-FC (http://sourceforge.net/projects/
ngsformaterconv/), to ensure each tool in a workflow can
work with the right format.

Identifiers

An identifier is a unique representation of a given data
entry [80, 81]. For example the Universal Protein Database
(UniProt) uses a “unique identifier” to refer to a pro-
tein entity which cannot be used in any other case, thus
ensuring no redundancy and one agreed unique term that
unequivocally identifies a given protein [82].

In biological research a variety of data repositories exist
and each of them is using its own implementation for gen-
erating unique identifiers. As an example, for the same
protein, UniProt uses the identifier Q9Y6N8 whereas
Ensembl [83] is referring to it as ENSP00000264463 and
RefSeq [84] as NP_006718.2. If all the researchers could
use a single unique identifier to refer to a given protein
across their publications and work, data integration would
be a step ahead of its current state.

An effort to help with the discoverability of the iden-
tifiers and assist the researcher with knowledge on how
to query data across databases has be done from identi-
fiers.org [85]. This is a registry that facilitates the discov-
ery of resources in life sciences and allows to decouple the
identification of records by the physical locations on the
web where they can be retrieved.

Many biological concepts are described in several
databases using different identifiers. To facilitate discov-
erability and integration, databases have their data entries
cross-referenced with external entries using identifiers.
This enables users to find a data entry like a protein
in UniProt and then find the same biological concept
described in other databases (ie. RefSeq) and gather more
relevant data about the same entry. Several initiatives like
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e =
Locus DQA08531 762 bp DNA linear PRI 08-MAR-2006
DEFINITION Homo sapiens prion protein PrP (PRNP) gene, complete cds.
ACCESSION DQA08s31
VERSION DQAO08531.1 GI:89160953
KEYWORDS .
header SOURCE Homo sapiens (human)
ORGANISM Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Eutclcostonmi;
Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
Catarrhini; Hominidac; Homo.
REFERENCE 1 (bases 1 to 762)
AUTHORS zhang,J., Liu,Y., Chen,H., Jiang,H., Lu,WN., Zhu,X., Xie,Q., Cai,X.
and Liu,X.
TITLE Analysis and comparison of bovine, ovine and human doppel gene Prnd
‘.. JOURNAL Unpublished
" FEATURES Location/Qualifiers meta data
source 1..762
/organism="Homo sapiens”
/mol _type="genomic DNA"
/db_xref="taxon:9606"
gene 1..762
/gene="PRNP"
features mRNA 1..762
/gene="PRNP"
CcDs 1..762
/gene="PRNP"
/codon_start=1
/product="prion protein PrpP"
/protein_id="ABD63004.1"
/db_xref="GI:89160954"
/translation="MANLGCWMLVLFVATWSDLGLCKKRPKPGGWNTGGSRYPGQGSP
GGNRYPPQGGGGWGQPHOGGWGQPHGGOWGQPHGGONGQPEGGCOWGQGGGTHSQWNKP
SKPKTNMKEMNAGAAANGAVVGGLGGYMLGSAMSRPIIHFGSDYEDRYYRENMHRYPNQ
VEIYRPMDEESNONNFVEDCVNITIKQETVITITKGENFIETDVKMMERVVEQMCITQY
S— ERESQAYYQRGSSMVLFSSPPVILLISFLIFLIVG" —
__ORIOIN
1 atggcgaacc ttggctgcotg gatgotggtt ctotttgtgg ccacatggag tgacctggge
61 ctctgcaaga agcgcccgaa goctggagga tggaacactg ggggcagcocg atacccgggg
121 cagggcagec ctggaggcaa cogctaccca cctcagggeg gtggtggeotg ggggcagect
Seq uence 601 accgacgtta agatgatgga gcgogtggtt gagcagatgt gtatcacccoa gtacgagagg data
661 gaatctcagg cctattacca gagaggatcg agcatggtcc tcttctcoctc tcocacctgtg
- 721 atcctccotga tcteotttoct catcttoctg atagtgggat ga -
i
Fig. 5 Selected parts of the GenBank entry DQ408531. The complete entry can be found at http://www.ncbi.nlm.nih.gov/nuccore/DQ408531

PICR [86] or the “DAVID ID conversion tool” [87] pro-
vide mapping of such identifiers. It will be beneficial if
such service gets integrated in the major bioinformatics
databases.

Some organised efforts including distributed resources
like IMEx [88] are very well organised and, though the
independent databases that are part of the consortium like
IntAct [81], MINT [89] and DIP [90] use their own iden-
tifiers, all their entries get assigned a unique IMEx iden-
tifier issued by a central authority. The IMEx identifier
is assigned to a single biological entity with the purpose
of being reused across databases/systems and always link
to the same entity regardless the system. The IMEx Cen-
tral repository coordinates curation effort, assigns identi-
fiers and facilitates the exchange of completed records on
molecular interaction data between the IMEx Consortium
partners.

Approaches like these can increase discoverability and
shareability of data and even enable publications and sci-
entific studies to use a single identifier to refer to a given

entity. This entity could be easily traced and further stud-
ied by their audience. With an infrastructure like this in
place, it will be possible to enforce researchers to sub-
mit the unique identifier of the biological entity that they
are studying on their research papers. This is happening
already for nucleotide sequence data where researchers
have to submit newly obtained/sequenced entities to one
of the three major sequencing databases [91] and refer to
it in the paper. Most of other data types can be used in
publications without such requirement. This also extends
to entire datasets.

Reporting guidelines

Huge steps have been achieved by the creation and adop-
tion of clear recommended guidelines when it comes to
depositing and disseminating data and datasets [92-95].
Such guidelines are often the result of several discus-
sions (years of discussions in some occasions) in a field
where data efforts for sharing have been maturing. The
specification of several standards in life science include
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uniprot.xsd">

<accession>P01308</accession>
<accession>QSEEX2</accession>
<name>INS_HUMAN</name>

<protein>
<recommendedName>. . .</recomnendedName>
< P >, ..</ P >

< P t>...</ P >

</protein>

<gene>

<name type="primary”>INS</name>
</gene>

<organism>

<name type="scientific”>Homo sapiens</name>
<name type="common">Human</name>

header

<lincage>...</lincage>
</organism>
<reference key="17>

last="32">...</citation>

</reference>

features

version="1" precursor="true”>

sequence

</sequence>
</entry>

</uniprot>

—_<uniptot xnlns="http://uniprot.org/uniprot” xmlns:xsi="http://www.w3.org/2001/XMLSchema~
instance” xsi:schemalocation="http://uniprot.org/uniprot http://www.uniprot.org/support/docs/

<entry datasect="Swiss-Prot"” crecated="1986-07-21" modified="2015-07-22" version="206">

<dbReference type="NCBI Taxonomy  1id="96067/>

<citation type="journal article” date="1980" name="Nature” volume="284" first="26"

<5Cope>NUCLEOTIDE SEQUENCE [GENOMIC DHA]</scope>

<dbReference type="EMBL" id="V00565">...</dbReference>
|__<dbReference type="EMBL" id="M10039">...</dbReference>

" <feature type="signal peptide” evidence="5">...</feature>

<feature type="peptide” description="Insulin B chain” id="PRO_00000158197>...</feature>
<fcaturec type="propeptide” description="C peptide” id="PRO_0000015820">...</fecature>
__<fecaturc type="peptide” description="Insulin A chain” id="PRO_00000158217>

<evidence key="18" type="EC0:0000269">...</evidence>
<sequence length="110" mass="11981" checksum="C2C3IB23BESES20ES” modified="1986-07-21"

MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAED
LOVGQVELGGGPGAGSLOPLALEGSLOKRGIVEQCCTSICSLYQLENYCN

f—

metadata

data

Fig. 6 Selected parts of the Uniprot entry P01308 in XML format - The complete entry can be found at http://www.uniprot.org/uniprot/P01308.xml

documentation and examples of how to use them, but
many initiatives additionally include guidelines to agree
on what minimum or recommended information should
be provided when describing data. Minimum information
guidelines have been very popular to ensure that data can
be easily interpreted and that results derived from their
analysis can be independently verified. These guidelines
tend to concentrate on defining the content and structure

of the necessary information rather than the technical for-
mat for capturing it. A key landmark in the development
of guidelines of minimun information in this area comes
from the “Minimum Information about a Biomedical or
Biological Investigation” (MIBBI) [93].

It is crucial to have a place where such efforts are listed
and shared in order to ensure redundancy is avoided. As
an example of reporting guidelines we mention here the

[ @HD VN:1.0 SO:unsorted
@SQ SN:Chrl LN:30427671
@SQ SN:Chr2 LN:19698289
@SQ SN:Chr3 LN:23459830
metadata @SQ SN:Chrd LN:18585056
#SQ SN:Chr5 LN:26975502
@SQ SN:mitochondria LN:366%24
@sQ sSN:chloroplast LN:154478
L #PG ID:Bowtiec VN:0.12.7
[ r0 Chril 25072478
rl
r2
rl

4
4
4
data ra 4
4
4

CL: "bowtie
55 S50M

-

rs
ré

s e e e

e s e s

cooo0oo0o
(- - - - - - O

—

Fig. 7 Selected parts of a SAM file

«m 1 =n 3 /home/tairl0 «p 10 --un /home/rep.sam”

o o AAGAANACTCGAT BB7BFA40BFFBFFIII XA:i:l

GGGTCHGATATGG BBBBF400<BFFFBFF XM:i:0
o o GCGCCHTTICTGGA BBBFFA0BFFFFFF<< XM:i:0
] o GGGTCAGATATGG BBBBFFFBBFFFFBFF XM:1:0
o o ACGGTACGITGGC BBBFFFFFFFFFFIII XM:i:0
o o GCTTTHAAGATCG BBBFF40<BBFBFFIF XM:i:l
o o TCGATATCACCGT BBBFFFFFFFFFFFII XN:i:0
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efforts done in the topic of protein-protein interactions.
Currently we see two reporting guidelines: MIMIx [96]
and IMEx [88]. A key project that is contributing in this
area and where one can look for as well as add “report-
ing guidelines” is the Registry of guidelines in biosharing.
org [58, 97].

As we have seen, there are different formats when it
comes to data files, and these will always evolve accord-
ing to the needs of the communities as well as the nature
of the data and associated technologies. For example, a
format that contains 20 fields for which one researcher
might have a subset of information versus another that
might opt for prioritising a different set. It is clear that
having a minimum agreed set of fields that all comply
to report using standards is crucial for data integration
and reusability across such data. Similarly, other fields
might be crucial and informative to a specific set of
users. These can be adopted at the level of recommended.
For example a protein-protein interaction database wants
to capture domain specific information about interac-
tions versus another one that is not interested in such
aspect. One also might have optional fields, for those that
want to annotate and enrich further the data record with
metadata. Doing this in a standard manner means again
allowing future reusability and expansion for others to
adopt and exchange, integrate data based on this level of
information.

Consortiums and standards initiatives

There are several initiatives coordinating the develop-
ment of community standards to facilitate data compari-
son, exchange and verification in bioinformatics. Some of
this initiatives are community initiatives or consortia like
COMBINE [98], PSI[99], GAGH [100], INSDC [101], pro-
teomeXchange [102], IMEx [88], BioPax [103] involved
in the development of standards in one specific biologi-
cal domain. Some other community initiatives like RDA
are more generic with a potential application in different
scientific domains.

Some strategic efforts supported by major service
providers and national governments like ELIXIR [104],
BBMRI [105], BD2K [106] are also involved in the devel-
opment of standards in life sciences. Projects supported
by specific grants like BioMedBridges [107], BioSHaRE
[108] do also contribute to this cause but their dura-
tion is normally bound to the duration of the grant. All
these initiatives play a major role in achieving consen-
sus and agreements which facilitates the development and
adoptions of standards.

In biological research, molecular biology has been the
field ahead in terms of such efforts and the associ-
ated bioinformatics applications. One can only imagine
the work yet to be done, learning from existing efforts
and initiatives as described here in the field of ecology,
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biodiversity, marine biology and so on. Examples of large
scale efforts that need to talk to each other and ideally
apply best practice when it comes to creating an infras-
tructure that fosters data integration are LifeWatch [109]
and ISBE [110].

Visualisation

There is a variety of visualisation tools, but often each
tool requires a different file format and the task of feeding
back the discovered data is not trivial [111, 112]. The field
of visualisation has its own challenges given the increas-
ing quantity of data, the integration of heterogeneous data
and the need for tools that allow representing multiple
aspects of the data (e.g. multiple connections between
nodes with diverse biological meanings [113, 114]).
There is a myriad of visualisation and analysis tools,
ever proliferating, with each tool providing specific fea-
tures that address different aspects (e.g. genome browsers
[115-119]). In 2008 Pavlopoulus et al published a wish
list for visualisation of biological data which still remains
valid [120].

Data integration principles are fundamental in provid-
ing tools that are user friendly and allow the end users
(biologists) to focus their efforts on the actual study of the
data instead of being lost in the process of looking for the
data they need by querying multiple databases that appear
to provide inconsistent results between them. The field
of systems biology per se brought substantial advances
in visualisations since the ability to analyse and interpret
interactions, networks and pathways relies often in the
ability of visualising these accurately [120].

Overcoming some of the challenges associated with
visualisation relies on better standards adoption and
improvement in annotation and metadata. This is clearly a
two directional effort: bottom up, where data and datasets
are annotated and stored following a common set of
standards, this extends to the data formats as well as a
top down level of standards and adoption of compati-
ble formats and output files that allow comparisons and
integrations of results [121-123].

Historically, many domains within biology have relied
on visualisation as a way to represent the biological infor-
mation thus creating what are now considered standards
in their domains. Plenty of examples can be found in
the areas of phylogenetics [124] and pathways [125, 126].
The advent of next generation sequencing brought
genomics as a domain were significant effort has been
put to develop new visualisation techniques to repre-
sent sequences, alignments, expression patterns and ulti-
mately entire genomes [127-130]. However, biological
researchers might lack an understanding and aware-
ness about the range of visualisation techniques available
and which is the most appropriate visual representation
[131, 132].
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An increased dialogue between the computational sci-
entists involved in the creation and development of such
tools with the end users (aka the biologists), would be ben-
eficial for the entire community and we hope this paper
is one step towards such outcome. Efforts in this direc-
tion are also on the way and we cite here the BiVi initiative
(http://bivi.co/), which is addressing several challenges
in the realm of visualisation as well as trying to reduce
the gap between the biology, computational sciences and
developers of bioinformatics tools. BiVi has grouped many
of the most notable visualisation tools produced by biolo-
gists and developers across seven domains (though some
of the tools cover more than one of these) and pro-
vides information as to their provenance, current status
and links to websites (http://bivi.co/visualisations). Other
community efforts in this area are VizBI (http://vizbi.
org/), SciVis (http://scivis.itn.liu.se/) and CoVis (http://
www.iwr.uni-heidelberg.de/groups/CoVis/).

It would be impossible for us to list the plethora of visu-
alisation tools developed and used in biological research,
hence we provide an overview in Table 4 of some of the
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most common visualisations tools in the area of “Inter-
action Network Visualisation” to illustrate the variety and
types of resources available for one area.

There are also well known and generally adopted anal-
ysis suites that also provide visualisation tools as part
of their repertoire of resources such as Galaxy [133],
Cytoscape [134, 135], Ondex [136], iPlant Collaborative
[137], Bioconductor [138]. Other important efforts derive
from initiatives that are working towards unlocking the
actual visualisations, in other words going from the visu-
alisation to the data and datasets. This is important not
only for reproducibility but also to allow access for data
and their integration with other data/datasets. A very
interesting resource is Utopia Docs [139, 140], a free
PDF reader that connects the static content of scien-
tific articles to the dynamic world of online content. This
resources allows the user to interact directly with curated
database entries; play with molecular structures; edit
sequence and alignment data; even plot and export tabu-
lar data. Another totally different but relevant initiative in
the world of visualisation is BIOJS, that aims to provide

Table 4 Common visualisation tools in the area of “Interaction Network Visualisation”

Name of resource

What it does

URL

BicOverlapper

BiGGEsTS

Brain Explorer

Data Matrix Viewer
EXPANDER

GENESIS
geWorkbench

Hierarchical Clustering Explorer

Java TreeView

Mayday

MultiExperiment Viewer

PointCloudXplore

TimeSearcher

R/BioConductor Geneplotter

GenePattern

Cytoscape

Visualisation of biclusters combined with profile plots
and heat maps

Heat map-based bicluster visualisation

Visualisation of 3D transcription data in the central
nervous system

Simple profile plot visualisation; supports Gaggle

Heat maps, scatter plots and profile plots of cluster
averages

Analysis suite; offers several interactive visualisations

Modular suite; heat maps, dendrograms, profile and
scatter plots

Linked heat map, profile and scatter plots; systematic
exploration

Linked heat maps, karyoscopes, sequence alignments,
scatter plots

Modular suite; many linked visualisations; enhanced heat
map113

Analysis suite; heat maps, dendrograms, profile and
scatter plots

Visualisation of 3D transcription data in Drosophila
embryos

Exploration and analysis of time series; advanced profile
plots

Karyoscope-style plots and other visualisations

Modular analysis platform; several visualisation modules
available

Open source software platform for visualizing molecular
interaction networks and biological pathways and
integrating these networks with annotations, gene
expression profiles and other state data

http://vis.usal.es/bicoverlapper/

http://tinyurl.com/BiGGESTS
http://tinyurl.com/brainExplorer

http://gaggle.systemsbiology.net/
http://acgt.cs.tau.ac.il/expander

http://genome.tugraz.at/
http://tinyurl.com/geWorkbench

http://tinyurl.com/HCExplorer

http://jtreeview.sourceforge.net/

http://tinyurl.com/maydaywp

http://www.tm4.org/

http://tinyurl.com/PointCloudXplore

http://tinyurl.com/timesearcher

http://www.bioconductor.org/

http://tinyurl.com/GenePatt

http://www.cytoscape.org/index.html
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open-source library of JavaScript components to visualise
biological data. BIOJS vision is that every online biological
dataset in the world should be visualised with BIOJS tools
(http://biojs.net/) [141, 142].

Conclusion

Data heterogeneity is one of the biggest challenges in bio-
logical data integration. This could be solved with standar-
dising the data structures that are being used. Biologists
should get more involved with the aspects described here
and working with bioinformaticians and computational
scientists to achieve uniformity of their data. With this
issue resolved, integration of biological data will greatly
boost biological research and the field will gain a more
robust structure: computational scientists will be respon-
sible for maintaining and improving the infrastructure
of the data; bioinformaticians will be able to build upon
this infrastructure; biologists will be able to do research
with advanced tools without the overhead of getting
acquainted with complex topics of database management
and programming tools.
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