
Han et al. J of Biol Res-Thessaloniki  (2016) 23:8 
DOI 10.1186/s40709-016-0047-6

RESEARCH

Co-culturing bacteria and microalgae 
in organic carbon containing medium
Jichang Han1, Lin Zhang1,2, Song Wang1, Guanpin Yang3, Lu Zhao1 and Kehou Pan1,4*

Abstract 

Background: Microalgae frequently grow in natural environment and long-term laboratory cultures in association 
with bacteria. Bacteria benefit the oxygen and extracellular substances generated by microalgae, and reimburse 
microalgae with carbon dioxide, vitamins and so on. Such synergistic relationship has aided in establishing an efficient 
microalga-bacterium co-culturing mode. Obviously, the mutually beneficial relationship can be strengthened with 
the increase of the densities of microalgae and bacteria. However, nearly all of the early co-cultures were performed 
under photoautotrophic conditions, thus both microalgae and bacteria were at relatively low densities. In this study, 
the feasibility of bacteria-microalgae co-cultured under mixotrophic conditions was studied.

Results: Firstly, bacteria mingled with xenic microalgae were isolated and identified based on their 16S rRNA gene 
sequence (16S rDNA hereafter). Then, the two most frequently found strains of Muricauda sp. were co-cultured with 
axenic microalga (Tetraselmis chuii, Cylindrotheca fusiformis and Nannochloropsis gaditana) in extra organic carbon 
containing medium. At the end of a co-culture period of 33 days, we found that the final cell density of T. chuii and C. 
fusiformis of various treatments was remarkably higher than that of controls (21.37–31.18 and 65.42–83.47 %, respec-
tively); on the contrary, the growth of N. gaditana was markedly inhibited. During the co-culture of bacteria with C. 
fusiformis, the cell density of two strains of bacteria firstly decreased, then increased and maintained at a relatively 
steady level. However, the cell density of bacteria performed a sustaining downward trend when they were co-cul-
tured with T. chuii and N. gaditana.

Conclusions: Our findings proved that microalgae-bacteria co-cultures under mixotrophic conditions are quite 
effective strategy for microalgal cultivation.
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Background
Microalgae and their valuable metabolites have the 
potential to be used as pollution control, food and feed 
additives, cosmetic, medicine production, etc. [1–3]. 
Moreover, microalgae are also considered to be the most 
appropriate feedstock of biofuel production. Diverse 
studies have been carried out to improve the efficiency 
of microalgal cultures (e.g., designing new photobioreac-
tor, optimizing culture condition and reforming culture 

mode) and increase the content of high value substances 
(e.g., polyunsaturated fatty acid and neutral lipid) [4–9].

Microalgae and bacteria inhabit together almost all 
aquatic environments and play crucial roles in nutrient 
cycling and energy flowing. As documented early, bac-
teria highly influence the growth of microalgae under 
autotrophic conditions either positively or negatively 
[10–14]. In general, bacteria promote microalgal growth 
by (among others) reducing dissolved oxygen concentra-
tion, consuming the organic materials excreted by algae 
[15] and secreting biotin, cobalt amine and thiamine [16]. 
In turn, microalgae reimburse bacteria with oxygen and 
extracellular compounds. Such reciprocity implies that 
microalgal growth can be enhanced by specific bacteria 
[10, 11].
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Many microalgae can grow on light and chemi-
cal energy concurrently achieving extraordinarily high 
growth rate [17–21]. It is imaginable that the bacteria will 
compete with microalgae for nutrients, either organic or 
inorganic, when they are added into the mixotrophic cul-
tivation system of microalgae. However, the competition 
can be abated by adding excessive nutrients or continu-
ously adding nutrients. In other words, the reciprocity 
between microalgae and bacteria may still exist in such a 
co-culture system as was documented between bacteria 
and microalgae/cyanobacteria in wastewater treatment 
[3] and between probiotics and animals [22].

Tetraselmis chuii, Cylindrotheca fusiformis and Nan-
nochloropsis gaditana are able to grow under mixo-
trophic conditions and can be cultured on a large scale 
[23–25]. Aiming to select bacteria that can promote 
microalgal growth, and to determine the feasibility of 
bacterium-microalga co-culture mode in organic car-
bon containing medium, we isolated and identified 
bacteria from xenic microalgal culture, and co-cultured 
the two most abundant bacteria with these three axenic 
microalgae each in medium containing organic sub-
stances. The growth performances of microalgae and 
bacteria were investigated during a co-culture period of 
33  days, and the feasibility of such cultivation strategy 
was discussed.

Results
Isolation and identification of bacteria
In total, 43 bacterial strains were isolated from 16 xenic 
microalgal strains and they were assigned to 19 genera. 
Most of them were identified in classes Bacteroidetes, 
Flavobacteria, α-proteobacteria, and γ-proteobacteria 
(Table  1). Though these xenic microalgae have been 
domesticated in laboratory for many years, their bac-
terial communities were still similar to those of marine 
environments [26]. The bacterial species in associa-
tion with different microalgae varied to a relatively large 
extent suggesting a possible interaction between specific 
microalgae and bacteria (Table 1) [27, 28]. Muricauda sp. 
which co-existed with 13 of 16 microalgal strains, was 
found to be the most ubiquitous bacteria (Table  2). All 
16 xenic microalgal strains grew well in long-term labo-
ratory culture. As a result, it was inferred that the ubiq-
uitous bacteria survived together with most microalgae 
were possible to promote microalgal growth. Accord-
ingly, two strains of Muricauda sp., Mur1 [GenBank: 
KM23334] and Mur2 [GenBank: KM23335], were chosen 
to co-culture with the three selected microalgae.

Growth curves of Mur1 and Mur2
The density of Mur1 and Mur2 each maximized at 72 h 
(1.2 × 1010 and 6.5 × 109 CFU mL−1, respectively), then 

drastically declined to 4.0 × 108 and 5.2 × 108 CFU mL−1 
at 96 h (Fig. 1) suggesting that the bacteria after reaching 
the maximal density might begin to secrete extracellular 
substances, which would affect the microalgal growth. 
As a result, Mur1 and Mur2 cultured for 24 h, with rela-
tively low concentration and high metabolic activity, were 
determined for use in the following co-culture phase.

Detection of extra bacterial contamination
No different bacterial colony was observed on the plates, 
and the sequencing results of co-inoculated samples were 
consistent with that of Mur1 or Mur2 indicating that 
all treatments have not been contaminated by external 
bacteria.

Growth performance of bacterium during co‑culture
For the combinations of Mur1, Mur2 and T. chuii, the 
bacterial densities of all treatments have drastically 
reduced in first 9  days, and remained at relatively low 
levels since then. Despite the initial density of different 
treatments varied greatly, their final density was similar 
to each other (Fig. 2a, b).

In co-culturing Mur1 and C. fusiformis, the bacte-
rium of treatment one presented a transient increase 
in first 6  days, decreased to the minimum on the day 
15, then displayed a slight increase and maintained at 
a relatively stable state (around 4.5 ×  107 CFU  mL−1).
The variation of bacterial density of treatment two and 
three was similar to each other; both decreased firstly, 
and then increased to a relatively stable amount (around 
4.5 × 107 CFU mL−1). The overall variation trend of three 
treatments of Mur2 was quite similar to those of Mur1 
(Fig. 2c, d).

The cell density of bacterium added into N. gaditana 
has been traced for 9 days. As shown in Fig. 2e and f, the 
variation trends of Mur1 and Mur2 was quite similar to 
those of C. fusiformis.

Growth performances of microalgae during co‑culture
As shown in Fig.  3, the growth performance of three 
microalga changed greatly during co-culture. Mur1 
and Mur2 promoted the growth of T. chuii and C. fusi-
formis heavily, but inhibited the growth of N. gaditana 
drastically.

The final cell density of T. chuii co-cultured with 
Mur1 or Mur2 was higher than that of control. Three 
treatments co-cultured with Mur1 increased the final 
cell density of T. chuii by 21.37 to 23.91  % (the high-
est was 5.68 × 106 cells mL−1). For Mur2, the improve-
ment ranged from 28.63  % to 31.18  % (the highest was 
6.01  ×  106 cells mL−1) (Fig.  3a, b). The enhancement 
of Mur1 and Mur2 to the growth of C. fusiformis was 
much greater than that to T. chuii. When co-cultured 
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with Mur1 and Mur2, the cell density of C. fusiformis 
increased by about 80 and 65 % over control, respectively 
(the highest cell density was 9.62 and 8.73  ×  106 cells 
mL−1, respectively) (Fig. 3c, d).

Such promotion was not found in N. gaditana. Instead of 
enhancement, the growth of N. gaditana of all treatments 
was obviously inhibited by Mur1 and Mur2 (Fig. 3e, f ). The 
inhibitory effect of Mur1 on N. gaditana was greater than 

Table 1 Bacterial species isolated from mixotrophically cultured microalgae

Acc. no., accession number of GenBank

Closest relative Strains Similarity (%) E‑value Acc. no. Classes

Muricauda sp. Mur1 99 0.0 JN594619 Bacteroidetes

Mur2 99 0.0 KF724486 Bacteroidetes

Mur3 99 0.0 JN594619 Bacteroidetes

Mur4 99 0.0 JN594619 Bacteroidetes

Mur5 99 0.0 JN594619 Bacteroidetes

Mur6 99 0.0 JN594619 Bacteroidetes

Mur7 100 0.0 EU839357 Bacteroidetes

Mur8 99 0.0 AY576776 Bacteroidetes

Mur9 99 0.0 EU839357 Bacteroidetes

Mur10 99 0.0 EU839357 Bacteroidetes

M. aquimarina Mur11 100 0.0 KC534238 Bacteroidetes

Mur12 99 0.0 KF500394 Bacteroidetes

Mur13 100 0.0 KF500394 Bacteroidetes

Mur14 99 0.0 KF500397 Bacteroidetes

Mur15 99 0.0 NR_042909 Bacteroidetes

Bacteroidetes bacterium Bac1 99 0.0 AY162097 Flavobacteria

Bac2 99 0.0 GU565603 Flavobacteria

Flavobacterium sp. Fla1 100 0.0 AF386740 Flavobacteria

Aestuariibacter sp. Aes1 99 0.0 JF309276 γ-proteobacteria

Marinobacter sp. Mar1 100 0.0 AB758589 γ-proteobacteria

Mar2 99 0.0 AM944524 γ-proteobacteria

M. flavimaris Mar3 100 0.0 AB617558 γ-proteobacteria

M. hydrocarbonoclasticus Mar4 99 0.0 JQ799112 γ-proteobacteria

M. radhaerens Mar5 100 0.0 NR_074765 γ-proteobacteria

Alteromonas sp. Alt1 99 0.0 AB636144 γ-proteobacteria

Alt2 99 0.0 AB636144 γ-proteobacteria

Pseudoalteromonas sp. Pse1 98 0.0 GQ495024 γ-proteobacteria

Pse2 99 0.0 GQ495024 γ-proteobacteria

Nitratireductor sp. Nit1 99 0.0 JN942153 α-proteobacteria

Nit2 99 0.0 JN942153 α-proteobacteria

Stappia sp. Sta1 100 0.0 JF899875 α-proteobacteria

Stappia indica Sta2 99 0.0 AB607882 α-proteobacteria

Labrenzia aggregata Lab1 99 0.0 AB681109 α-proteobacteria

Maricaulis parjimensis Mac1 99 0.0 NR_025323 α-proteobacteria

Zhangella mobilis Zha1 99 0.0 EU255260 α-proteobacteria

Oceanicaulis sp. Oce1 100 0.0 AB681546 α-proteobacteria

Sagittula sp. Sag1 99 0.0 KC534267 α-proteobacteria

Tropicibacter sp. Tro1 98 0.0 KC534265 α-proteobacteria

Rhodopirellula baltica Rho1 100 0.0 JN694985 Planctomycetacia

Rho2 99 0.0 HQ845537 Planctomycetacia

Cytophaga sp. Cyt1 98 0.0 AB073564 Sphingobacteria

Kocuria rosea Koc1 99 0.0 JN192402 Actinobacteria

Bacillus jeotgali Bai1 99 0.0 JX094165 Firmicutes
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that of Mur2. Microscopic observation showed that some 
cells of N. gaditana started to rupture on day 5.

Discussion
In the present study, the positive effect of selected bac-
teria on the growth of microalgae was observed, indicat-
ing the co-culture mode of microalgae-bacteria in the 
organic substance containing medium was feasible and 
highly efficient. On the other hand, the results of the pre-
sent study indicated that specific bacteria can drastically 
inhibit the growth of specific microalgae, as in the case 
of N. gaditana. The phenomenon of specific bacterium 

induce different effect on different microalgae has been 
reported earlier [29, 30], which indicated that the deter-
mination of suitable combination of microalga and 
bacterium was quite important for the successful imple-
mentation of co-culture mode.

In general, bacterial metabolism can benefit microal-
gal growth by providing favorable microenvironments, 
e.g., increasing carbon dioxide, secreting vitamins and 
reducing photosynthetic oxygen tension [16, 31, 32]. 
Obviously, such beneficial effects will be enhanced by 
increasing bacterial density as it has been demonstrated 
by the results of the present study. For example, the 
higher the initial concentration of Mur1, the faster the 
growth of C. fusiformis in the early phase of co-culture 
(day 2–8). By consuming the original organic substance, 
the bacterial density of all treatments reduced and main-
tained at a similar level, which further resulted in a simi-
lar microalgal growth rate and a final microalgal density 
among all treatments. Such observation is in contrast to 
previous reports [33]. The relatively sufficient nutrient in 
our culture system may have alleviated the competition 
between microalga and bacterium, thus being responsi-
ble for this difference.

Except for positive effect, drastically inhibition phe-
nomenon was also observed. Overall, the bacterium 
can restrain the microalgal growth by several ways 

Table 2 Bacteria and corresponding microalgae

Numbers from 1 to 16 stand for the xenic microalgal strains used in this study, 1: Nannochloropsis oceanic; 2: N. gaditana; 3: N. oculata; 4: Thalassiosira sp.; 5: 
Chaetoceros gracilis; 6: Navicula sp.; 7: Cylindrotheca fusiformis; 8: Phaeodactylum tricornutum; 9: Pseudo-nitzschia sp.; 10: Pavlova sp.; 11: Chromulina sp.; 12: 
Gymnodinium sp.; 13: Amphidinium carterae; 14: Prorocentrum minimum; 15: Karenia mikimotoi; 16: Heterosigma carterae

+, bacterium was obtained; margin, bacterium was not isolated

Bacterial species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Muricauda sp. + + + + + + + + + + + + +
Bacteroidetes bacterium + + + + + + + + + + +
Flavobacterium sp. + + + + + +
Aestuariibacter sp. + + +
Marinobacter sp. + + + + + + +
Alteromonas sp. + + + +
Pseudoalteromonas sp. + + + + + +
Nitratireductor sp. + + + + + + + + +
Stappia sp. + + + + + +
Labrenzia aggregata + + + +
Maricaulis parjimensis + + + + + + + +
Zhangella mobilis +
Oceanicaulis sp. + + + + +
Sagittula sp. + + + +
Tropicibacter sp. + + +
Rhodopirellula baltica + +
Cytophaga sp. + + +
Kocuria rosea + + +
Bacillus jeotgali + + +

Fig. 1 Growth curves of Mur1 and Mur2. Error bars are too small to 
be seen
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including (among others) the competition for nutrients 
[34–36], the excretion of algicidal substances [37–39], 
and the degradation of the cell wall of the microalgal cell 
through direct contact [40–42]. For the combination of 
Mur1/Mur2 and N. gaditana, several phenomena can be 
detected. For example, the microalgal density of all treat-
ments was obviously lower than that of control except 
at day 3; the inhibitory effect of bacteria on N. gaditana 
enhanced with the increase of the original bacterial con-
centration; the bacterial densities of all groups except 
the combinations of N. gaditana and Mur1/Mur2 at the 
ratios of 1.96/0.59 declined all the time; and the cells of 
N. gaditana began to rupture after 5 days of co-culture. 
As a result, it can be inferred that the inhibitory effect 
was caused by direct contact, and such effect may appear 
as long as the density ratio of bacterium to microalgae 
reached a certain threshold.

During co-culture, not only the density of microalgae 
changed greatly, but also the concentration of bacteria 
experienced large fluctuations. Following the consump-
tion of the original organic substance, the concentration 
of bacterium of nearly all treatments shared a common 

declining trend in first 9  days. As the incubation time 
prolonged, the variation trend of bacterial density among 
different combinations began to diverge, either continu-
ously declining (T. chuii) or steadily rising (C. fusiformis). 
Such obvious discrepancy can come down to the differ-
ence of excreting extracellular substances between a ben-
thic diatom and a green alga. In addition, the compounds 
secreted by T. chuii may also play a role on the continu-
ous decline of bacterial density as it has been observed in 
other microalgae [43–45].

Based on our results, it can be deduced that bacteria 
and microalgae interacted each other when they were 
co-cultured in the medium containing extra organic 
substance. Screening bacteria capable of promoting 
microalgal growth is relatively simple. However, it needs 
more attention to determine an optimum candidate for 
a specific microalga. For example, the final density of C. 
fusiformis was around 80 and 65  % higher than that of 
control when it was co-cultured with Mur1 and Mur2, 
respectively; however, the promotion became around 23 
and 30 % for T. chuii. This difference was possibly caused 
by different performances of bacteria and microalgae in 
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Fig. 2 Growth performances of Mur1 and Mur2 during co-culture. Mur1 and Mur2 co-cultured with T. chuii (a, b); C. fusiformis (c, d); N. gaditana (e, 
f), respectively
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the ability of competing for nutrients (both organic and 
inorganic), the respiratory and photosynthetic rate and 
the kind and amount of excreting substance.

Methods
Microalgal strains
Sixteen xenic microalgal strains (Table 2) were obtained 
from the culture collection of microalgae of Ocean Uni-
versity of China, and cultured in f/2 seawater medium 
[46] at 25 ±  1  °C and under 70  µmol photons m−2  s−1 
irradiation with a photoperiod of 12  h light and 12  h 
dark. Three axenic microalgae (T. chuii, C. fusiformis and 
N. gaditana) were obtained as described previously [47]. 
The axenic algal cells stained by SYBR Green I (Solarbio, 
China) were examined under fluorescence microscope 
[47, 48].

Isolation and preliminary identification of bacteria
Microalgae in stationary growth phase were inoculated 
into fresh f/2 medium at a ratio of 1/10 (v/v) and cul-
tured for 20 days. One mL of microalgal culture was 1000 
fold diluted with sterile f/2 medium. Then, 1  mL of the 
dilution was mixed with 25  mL of sterile 2216E marine 

bacterium solid culture medium (1.5 % agar containing), 
poured into Petri dish and cultured at 37 °C for 72 h. In 
total, 15 colonies were picked up from each plate, and 
inoculated into 2  mL of 2216E liquid medium and cul-
tured at 37  °C and 200  rpm for one day. After that, the 
culture was streaked and cultured for 3  days. A single 
colony was picked up and inoculated into 2 mL of 2216E 
medium and cultured for 2 days. One mL of each culture 
was stored at −80 °C in 20 % of glycerol (v/v) and the rest 
1 mL was used to extract DNA with CTAB method [49]. 
The universal primers for the amplification of 16S rRNA 
gene used in this study were listed in Table 3. In this pro-
cedure, primers of 27F and 1492R were preferred, and the 
pairs of 63F and WBAC2, E9F and 1542R were taken as 
alternatives.

PCR was carried out on a thermocycler (Eppendorf, 
Germany) with a cycling regime of (1) one cycle of 5 min 
at 94 °C, (2) 30 cycles of each 30 s at 94 °C, 30 s at 50 °C, 
and 1.5 min at 72  °C, and (3) 10 min at 72  °C. The final 
volume of PCR mix was 50 µL containing 25 µL EasyTaq® 
PCR SuperMix (TransGen Biotech, Beijng, China), 1 µL 
of each primer (0.2 µM), 2 µL DNA template and 11 µL 
ddH2O. PCR products were purified with OMEGA Gel 
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Fig. 3 Performance of three microalga during co-culture. T. chuii (a, b), C. fusiformis (c, d) and N. gaditana (e, f) co-cultured with Mur1 and Mur2
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Extraction Kit (OMEGA, USA) and subsequent sam-
ples were sent to Sango Company (Shanghai, China) for 
sequencing.

Primary determination of growth curves of Mur1 and Mur2
Many bacteria secrete extracellular substances after 
reaching their maximum densities [54]. To reduce the 
effects of such potential substances on microalgal growth 
as much as possible, the growth curves of the two most 
abundant bacterial strains, Mur1 and Mur2, were drawn 
ahead of co-culture.

One hundred μL of bacterial culture maintained at 
−80  °C were transferred to 400  mL of 2216E medium, 
cultured at 37  °C and 200  rpm for 120  h. During this 
period, one mL of culture was taken every day and it was 
tenfold diluted. Then, 1  mL of the dilution was mixed 
with 25  mL of 2216E marine bacterium solid medium 
and cultured under the same conditions as above for 
72 h with colonies counted. Plates with 20–200 colonies 
were chosen to calculate the bacterial density using the 
equation: bacterial density (CFU  mL−1) =  colony num-
ber × dilution fold.

Algae‑bacteria co‑culture
Four mL of axenic microalgae each in stationary growth 
phase, in which the cell density of T. chuii, C. fusiformis 
and N. gaditana was about 2.0  ×  106, 2.8  ×  106 and 
1.9 ×  107 cells mL−1, respectively, were inoculated into 
41 mL of fresh f/2 medium and cultured at 25 ± 1 °C and 
under 70 µmol photons m−2 s−1 irradiation under a light 
cycle of 12 h light and 12 h dark for 15 days. The final cell 
density was determined with a hemocytometer (Qiujing, 
Shanghai, China).

One hundred μL of Mur1 and Mur2 maintained at 
−80  °C were inoculated into 400  mL of fresh 2216E 
medium and cultured at 37  °C and 200  rpm for 24  h. 
The bacterial density was determined with the method 
described above.

Afterwards, 1  mL (treatment 1), 3  mL (treatment 2), 
and 5 mL (treatment 3) of the bacteria were collected by 

centrifugation and suspended in 5  mL modified 2216E 
medium (1 L seawater containing 5.0  g peptone, 1.0  g 
yeast extract, 1.0  g glucose and 0.1  g FePO4), mixed 
with 45  mL of axenic microalgal culture. Microalgae 
each mixed with 5 mL of modified 2216E medium were 
cultured as controls. The microalgae/bacteria density 
was investigated every 2/3  days respectively, with the 
method described above. The initial density ratios of 
bacteria to microalgae of various treatments were listed 
in Table 4.

Verification of bacterial contamination
On the last day of co-culture, 1  mL of 1000-fold dilution 
of microalgal culture was mixed with 2216E solid medium 
and cultured under the same conditions as above for 3 days. 
Thirty bacterial colonies were picked from each plate ran-
domly and co-inoculated into 2 mL of 2216E and cultured 
for 2 days. The 16S rDNA was amplified with primer 27F 
and 1492R, sequenced and used to perform a local align-
ment (Bioedit) with the sequences of Mur1/Mur2.

Conclusions
Compared to autotrophic culturing system, additional 
organic nutrients in our co-culturing system yielded 
higher cell densities of both microalgae and bacteria. As 
a result, the effect of bacteria on microalgae, either posi-
tive or negative, was heavily intensified. Such co-culture 
mode was quite different from those documented early 
displaying obvious enhancements on the growth of T. 
chuii and C. fusiformis, which was potential to be used in 
microalgal cultivation.
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