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Abstract 

Mitochondrial DNA (mtDNA) has been studied intensely for “its own” merit. Its role for the function of the cell and the 
organism remains a fertile field, its origin and evolution is an indispensable part of the evolution of life and its interac-
tion with the nuclear DNA is among the most important cases of genome synergism and co-evolution. Also, mtDNA 
was proven one of the most useful tools in population genetics and molecular phylogenetics. In this article we focus 
on animal mtDNA and discuss briefly how our views about its structure, function and transmission have changed, 
how these changes affect the information we have accumulated through its use in the fields of phylogeny and popu-
lation structure and what are the most important questions that remain open for future research.
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Background
Mitochondria are organelles, remnants of ancestral bac-
terial endosymbionts, found in nearly all eukaryotic cells 
[1]. Mitochondria, along with plastids in plants, are the 
only cytoplasmic organelles in the eukaryotic cell that 
carry genetic elements. In the last release of organelle 
section of the genome database of NCBI (June 2016) 
there were 6955 complete mtDNA sequences of which 
6253 (~90%) belong to animals. Of the latter 4024 (64%) 
belong to metazoans. This bias for metazoan mtDNA 
does not allow for a complete picture of mtDNA varia-
tion in the entire eukaryotic world.

This review is, also, restricted to animal mtDNA, which 
is a relatively conserved molecule [2]. In most animals the 
mtDNA is a short, circular molecule that contains about 
13 intronless, protein-coding genes, all of which are 
involved in oxidative phosphorylation (OXPHOS), a pro-
cess also known as aerobic respiration. Animal mtDNA 
also contains two rRNA genes and 22 or 23 tRNA genes, 
which are part of the translational machinery of the mito-
chondrion. With few exceptions, non-coding regions in 
the mtDNA molecule are few and short, apart from the 

region that contains the regulatory elements for repli-
cation and transcription. This region is known as large 
non-coding region and its length and position within the 
molecule vary greatly among species. The prevailing view 
is that animal mtDNA is maternally transmitted, non-
recombining and with elevated mutation rate compared 
to nuclear DNA.

As noted, this general description of animal mtDNA 
cannot be extended to all eukaryotes. If we compare ani-
mals, fungi, protists and plants, we will find that their 
mtDNAs differ drastically in all major characteristics. 
MtDNA is an extremely variable genome, perhaps more 
variable than the nuclear genome. The variability is not 
surprising, given the 2 billion years of mtDNA evolution 
[3, 4]. Even within animals, the variation is much more 
than the traditional view of animal mtDNA conservatism 
would imply. In the following paragraphs we list and dis-
cuss shortly some of the most important variations we 
know in the metazoan mtDNA.

Functions and uses of mtDNA
Mitochondria have been characterized as the power-
houses of the cell, because their most basic function is 
OXPHOS. The coding and synthesis of proteins that 
are integral parts of enzymatic complexes that catalyze 
OXPHOS, remains the most important role of mtDNA, 

Open Access

Journal of Biological 
Research-Thessaloniki

*Correspondence:  ladoukakis@biology.uoc.gr 
Department of Biology, University of Crete, Voutes University Campus, 
70013 Iraklio, Greece

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40709-017-0060-4&domain=pdf


Page 2 of 7Ladoukakis and Zouros ﻿J of Biol Res-Thessaloniki  (2017) 24:2 

and it is the function of mtDNA we find in all eukary-
otes. However, mitochondria participate in several other, 
important cellular processes, such as apoptosis [5], age-
ing [6], signalling [7], metabolic homeostasis and biosyn-
thesis of important macromolecules such as lipids and 
heme [8, 9]. It is only recently that we have become aware 
of the multiplicity of functions that mtDNA coded pro-
teins may exhibit, beyond their participation in OXPHOS 
[10]. Examples include NAD2 which interacts with Src, 
a tyrosine kinase which is critical for controlling impor-
tant cellular functions [11]. The males of several fresh-
water mussels carry a COX2 gene with a long extension 
of approximately 185 amino acid residues, which is sup-
posed to play a role in the biparental transmission of 
mtDNA, known as doubly uniparental inheritance—DUI 
mechanism [10, 12] (we discuss DUI below). Inversely, 
there are mtDNA-encoded peptides that do not partici-
pate in OXPHOS, and are suspected to play important 
roles in other cellular functions. For instance, a small 
peptide that is encoded in the 16S RNA gene of human 
is suspected to act as an oncogene [13]. Another exam-
ple is a small peptide (of only 14 aa) that is encoded in 
the control region of the male mtDNA of various bivalves 
with DUI, for which it is suggested that it plays a role in 
this exceptional mode of mtDNA transmission [14, 15]. 
Other mtDNA encoded peptides have been found in 
several animal species, but their functional role remains 
uncertain [10].

Mutations in mtDNA genes have been implicated in 
several severe genetic diseases in humans. These muta-
tions are either point substitutions or deletions of vary-
ing length [16]. There is no general pattern in the causes 
of mitochondrial diseases, but it seems that they result 
from a heteroplasmic state in which the defected mtDNA 
co-occurs with normal mtDNA. Since there is no mei-
otic control in mtDNA replication, the defected molecule 
can increase its frequency in the cell either stochastically 
or because its smaller size allows for a faster replication 
rate. It has been suggested that the diseased phenotype 
appears when the frequency of the defected mtDNA 
surpasses a threshold, which varies from mutation to 
mutation and from tissue to tissue [17]. Mitochondrial 
diseases can be extremely complex and their treatment is 
difficult. Their importance has led to the development of 
the field of mitochondrial medicine. A well known suc-
cess of mitochondrial medicine is the, so called, “three 
parent embryos” method, which consists in the dilu-
tion of the defected maternal mitochondria with mito-
chondria from a third person (thus, the embryo has two 
nuclear DNA parents and a different mtDNA parent) 
[18].

It would be no exaggeration to say that mtDNA is 
responsible for the explosion of studies in population 

genetics and molecular phylogenetics in the last quar-
ter of past century. The first studies of animal mtDNA 
revealed that it possesses characteristics that make it 
an ideal genetic marker [19]. Maternal inheritance and 
absence of recombination are very desirable properties 
for a tool in the reconstruction of phylogenetic histories 
because it allows tracing each lineage as a single evolu-
tionary history. Further, the existence of conserved and 
less conserved regions within the same molecule and the 
elevated mutation rate relative to the nuclear DNA make 
mtDNA suitable for comparisons both among individu-
als from the same population and among distantly related 
species.

These intrinsic properties of mtDNA as a tool for 
population genetic studies were complemented with its 
rather inexpensive use. The alternation of variable and 
conserved regions on the same molecule allowed the 
design of universal primers which could amplify pieces of 
the mtDNA of practically any species, without previous 
knowledge about the species’ mtDNA. Multiple copies 
of mtDNA within each cell made the amplification of the 
mtDNA easier than parts of the nuclear DNA. Homo-
plasmy of mtDNA made feasible the direct sequenc-
ing of the PCR product, unlike nuclear genes where the 
maternal and paternal alleles need to be separated before 
sequencing. Both the intrinsic properties and the tech-
nical ease made the mtDNA perhaps the most popular 
genetic marker before the advent of large scale sequenc-
ing. But these celebrated natural properties of mtDNA 
proved to be rules with exceptions. Ruther than being 
a nuisance, these exceptions helped us to get a deeper 
insight into the molecule’s evolution and function, as we 
will show in the subsequent paragraphs.

Size, shape and gene content variation
Animal mtDNA is normally a circular, compact molecule 
about 17  Kb with little variation in size, containing 13 
protein coding genes, 2 rRNA and 22 tRNA genes. This 
pattern is conserved among bilaterians, with few excep-
tions. However, in non-bilaterians there is high variation 
in size, shape, gene content and genetic code of mtDNA 
(for a comprehensive review of the variation of mtDNA 
among non-bilaterian animals, see [20]) . The smallest 
metazoan mtDNA is that of the Ctenophore Mnemiop-
sis leidyi, which is just above 10 Kb [21], and the largest 
of the bivalve Anadara sativa, with a length over 48 Kb. 
Within all eukaryotes, mtDNA varies greatly in size and 
gene content. The mtDNA of the cucumber (Cucumis 
sativus) is 1556  Kb and carries 65 genes, while that of 
the fungus Cryphonectria parasitica is only 1.3  Kb and 
carries one gene. Some plants have smaller mtDNAs 
than that of the cucumber but carry more genes. Such 
is the mtDNA of the pepper Capsicum annuum which 
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is 511  Kb and carries 221 genes. The variation in size 
becomes even larger if we take into account organelles, 
such as mitosomes and hydrogenosomes, which derive 
from the mitochondrion but lack DNA and maintain only 
a double membrane [22, 23].

The mtDNA of some animals is not a single circular 
molecule, but occurs as two or more circular or linear 
“chromosomes” [24–28]. The number of these chromo-
somes varies from two (e.g. in Liposcelis bostrychophila 
[29]) to as high as 20 in the human body louse, Pedicu-
lus humanus [27]. Similarly, an examination of the NCBI 
organelle genome database reveals that the GC content 
of animal mtDNA varies from 11 to 57%.

Maternal transmission and heteroplasmy
There are several exceptions to the rule that mtDNA is 
maternally transmitted. In some plants (e.g. most conifers 
[30] and cucumber [31]) mtDNA is paternally transmitted 
through pollen. In animals, a well known and idiomorphic 
case of paternal transmission is that of doubly uniparental 
inheritance (DUI) that is found in several species of mol-
luscan bivalves [32, 33]. In this peculiar mode of inher-
itance, females transmit their mtDNA to both male and 
female offspring and males transmit their mtDNA only 
to male offspring. The result is the co-occurrence in the 
same species of two independently evolving mtDNA line-
ages, one that is transmitted through the eggs and another 
through the sperm. Consequently, females are basically 
homoplasmic for the maternal mtDNA (but may contain 
low amounts of paternal mtDNA) and produce eggs with 
only the maternal mtDNA. Males are heteroplasmic for 
both the maternal and the paternal mtDNA but produce 
sperm that contains only the latter.

The mechanisms that ensure maternal transmission 
of mtDNA vary in different organisms [34]. For exam-
ple, in mammals sperm mitochondria are ubiquitinated 
and subsequently destroyed [35]; in Drosophila, mito-
chondria are destroyed during spermatid formation [36]; 
in Oryzias latipes, the mitochondria of the sperm are 
actively destroyed [37] and in Caenorhabditis elegans the 
sperm’s mitochondria are destroyed through autophagy 
[38, 39]. Maternal inheritance of mtDNA leads to homo-
plasmic individuals, i.e. individuals that have a single type 
of mtDNA. Homoplasmy is further reinforced by pre- 
and a post- fertilization bottlenecks [40]. The pre-ferti-
lization bottleneck occurs during oogenesis, where the 
number of mitochondria is severely reduced in the germ 
line, before maturation of the oocyte. The post-fertili-
zation bottleneck occurs between the zygote formation 
and the blastocyst embryonic stages, during which there 
is intense cell division but suppression of mitochondrial 
proliferation, a mechanism that leads to a reduced num-
ber of mitochondria per cell.

The variation of the mechanisms that have been 
evolved to ensure maternal transmission of mtDNA and 
the ubiquity of this transmission mode among organisms 
indicate that there must be a strong evolutionary rea-
son for the maintenance of maternal transmission. The 
most prominent hypothesis for maternal transmission 
of mtDNA is that uniparental (maternal in the case of 
metazoans) transmission of mtDNA prevents the spread 
of selfish (fast replicating) mutations in the population 
[41–43]. This hypothesis is supported by experiments in 
yeast, where yeast cells with a small, defective mtDNA 
molecule replicate faster than the normal mtDNA, but 
produce smaller colonies (petit) relative to the cells with 
normal mtDNA [44]. Recently, a second hypothesis—
not necessarily mutually exclusive to the above—sug-
gests that maternal transmission has evolved to prevent 
heteroplasmy [45]. Heteroplasmy has been involved in 
mitochondrial diseases [46]. Experimental evidence from 
mice have shown that heteroplasmy can cause severe 
physiological, cognitive and behavioral problems [47]. In 
Drosophila though, there are reports that heteroplasmy 
is adaptive. When both molecules contained a deleteri-
ous mutation, different in each molecule, the presence 
of both molecules in the same individual cancels out the 
deleterious effects caused when each molecule occurs 
alone [48].

Given the strictness of the mechanisms that pre-
vent paternal leakage of mtDNA, heteroplasmy should 
be extremely rare in nature. However, more and more 
publications reported heteroplasmy in natural popula-
tions in several species such as anchovy [49], Drosoph-
ila [50], mice [51], oniscid crustaceans [52], frogs [53] 
and humans [54, 55]. Despite the increased number of 
reports of heteroplasmy, the proportion of species in 
which heteroplasmy has been observed remains low, 
compared to the large number of species that sequences 
for their mtDNA have been deposited in GenBank. One 
possibility is that heteroplasmy is common but it cannot 
be easily detected with the techniques used. The most 
commonly used technique involves PCR-amplification 
of a specific segment of the mtDNA molecule and subse-
quent sequencing, either directly or after cloning. If the 
targeted mtDNA pool contains a predominant molecule 
and some other types in low frequencies, the traditional 
Sanger sequencing will not reveal the presence of the 
rare molecules. Only the design of specific primers for 
the rare molecules could detect them when using direct 
sequencing. Alternatively, a large number of clones from 
the PCR product need to be sequenced, or next genera-
tion sequencing (NGS) should be applied, to reveal the 
presence of rare molecules. The accuracy of next gen-
eration sequencing allows not only to detect hetero-
plasmy when it is present [e.g. 54], but also to eliminate 
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the possibility of heteroplasmy if no evidence for it is 
obtained. In a recent study, paternal transmission was 
excluded from four human parents-offspring trios [56].

Heteroplasmy may result through different routes, not 
mutually exclusive. First, the egg may be heteroplasmic, 
containing two or more different types; this is the case of 
mother-inherited heteroplasmy. Second, somatic muta-
tions may occur during mtDNA replication in somatic 
cells. Given the tremendous amount of mtDNA copies 
per individual (a diploid organism may contain billions of 
cells and each cell contains two copies of nuclear genes 
but hundreds or thousands of copies of mtDNA) and the 
elevated mutation rate of mtDNA in animals, each indi-
vidual contains unavoidably many mutated forms of the 
mtDNA which it inherited from its mother. Finally, leak-
age of paternal mtDNA can be a significant source of het-
eroplasmy. The mitochondria of the sperm may escape 
destruction in the egg during fertilization so that the 
embryo will be heteroplasmic for a maternal and a pater-
nal mtDNA molecule.

Some authors suggested that leakage of paternal 
mtDNA occurs accidentally because the mechanism 
that supervises uniparental transmission is not infalli-
ble [57]. The chance of paternal leakage in offspring will 
be higher when the genetic distance between the two 
parents is high. The reason for this is failure of the egg-
sperm mitochondrial recognition mechanism. Basically, 
the mechanism consists of a factor that is coded by the 
maternal nuclear genome and occurs in the eggs, and of a 
signal that is coded by the paternal genome and occurs in 
the outer surface of sperm mitochondria. When the lat-
ter enter the egg their signal is recognized by the factor 
and destruction of sperm mitochondria ensues. A sequel 
of this hypothesis is that the mechanism will be less effi-
cient the more divergent are the maternal and paternal 
species. The hypothesis suggests that heteroplasmy will 
be more common in progeny from heterospecific than 
from homospecific crosses. Evidence from Drosophila 
and frogs supports this hypothesis [53, 58, 59], but fur-
ther support is needed. Other authors have suggested 
that paternal leakage might be under the control of natu-
ral selection [59].

The overall evidence suggests that heteroplasmy is 
common to the point that strictly maternal inherit-
ance cannot be held as a rule. This would be true if we 
consider maternal inheritance as a qualitative charac-
ter or, alternatively, if we consider paternal leakage as a 
presence/absence trait. But it might be more useful to 
consider maternal transmission as a quantitative charac-
teristic [60]. If we do so, then the answer is that in ani-
mals an overwhelming amount of mtDNA is maternally 
transmitted and that paternal leakage is restricted to very 
low amounts.

Recombination
Recombination in plants and fungi mtDNA has been 
reported in the early 80s of past century [61, 62], but 
animal mtDNA was considered for decades as a non-
recombining genome [63]. The view that there is no 
recombination in the animal mtDNA was based on the 
assumption of homoplasmy, itself a result of the assump-
tion of strict maternal transmission. The view was 
supported by the persistent lack of evidence for recom-
bination. But experiments showed that animal mitochon-
dria contain the enzymatic apparatus for recombination 
[64]. The first direct evidence for recombination was 
obtained by Ladoukakis and Zouros [65] in mussels. This 
was followed by a long list of mtDNA recombination in 
other organisms, including human [66] and Drosoph-
ila [67], using either direct sequencing or utilizing data 
deposited in GenBank [68–71]. Like heteroplasmy, the 
detection of recombination is not easy given the rarity of 
recombinant molecules in an individual. However, next 
generation sequencing (NGS) techniques promise to be 
a powerful tool for the detection of recombinants, given 
their ability to detect molecules in a DNA pool that occur 
in very low amounts. But NGS can also produce artificial 
recombinants (chimeric sequences) in a low frequency 
[72]. Evidence for real recombination requires, there-
fore, that the detected recombinants exceed the error 
threshold of the used technology. Using these sensitive 
techniques Kraytsberg et al. [66] detected recombination 
in human mtDNA and Hagstrom et al. [73] were able to 
exclude mtDNA recombination in mice.

The evolutionary consequences of recombination of 
mtDNA are far reaching. Non recombining genomes 
accumulate deleterious mutations much faster than 
recombining ones through the mechanism known as 
Muller’s ratchet [74, 75]. ΜtDNA, which originated from 
symbiosis of an a-proteobacterium with an archaeobac-
terium [76] about 2 billion years ago [3], should have 
collapsed under the burden of accumulated deleterious 
mutations [77]. The elevated mutation rate and the low 
effective population size of animal mtDNA, which is esti-
mated to be one quarter of that of nuclear autosomes [78] 
makes the mtDNA more prone to accumulation of del-
eterious mutations. That the mtDNA molecule has not 
collapsed may be due to recombination. It is known that 
even a very low recombination rate would be sufficient to 
cancel Muller’s ratchet [79, 80] and rescue mtDNA from 
deleterious mutation meltdown.

The presence of mtDNA recombination may have had 
an undesirable effect on its use as a genetic marker. Simu-
lations have shown that a phylogenetic tree reconstructed 
with mtDNA sequences that were allowed to recombine 
had, in comparison with a tree in which mtDNA recom-
bination was not allowed, longer terminal branches, 
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larger total branch lengths and shorter times to the most 
recent common ancestor [81]. However, more research is 
needed to appreciate the effects of mtDNA recombina-
tion on phylogeny reconstruction, particularly with the 
extensive use of Bayesian methods on phylogeny.

Concluding remarks
The history of our understanding of animal mtDNA is 
itself a lesson of how we gain knowledge of the complexity 
in biology. In the early 80s of past century animal mtDNA 
was a very accommodating molecule, God’s gift to those 
interested in phylogeny, taxonomy and population genet-
ics: small, conservative in gene arrangement, with slow 
and fast diverging segments, uniparentally inherited, 
homoplasmic, non-recombining, with one function (the 
OXPHOS), easy to study. The result was an explosion of 
our knowledge of the tree of life from its roots and big 
branches to tiny bifurcations at the top. Gradually the 
molecule presented us its true face. No “rule” about it 
remained unbroken. The size of 18 Kb is valid as a mean, 
but there is large variation around it. Maternal inheritance, 
and therefore homoplasmy, can be bypassed in many ways, 
and recombination occurs when conditions allow it to 
occur, i.e., fusion of mitochondria with different mtDNAs. 
Perhaps more important than the above, animal mtDNA 
proved to be anything but a single-purpose molecule. It is 
involved in male fertility, in the action of muscles and neu-
rons, in ageing and in sex inheritance. Its interactions with 
the nuclear genome remain largely unexplored, but are so 
serious that the mtDNA has become an important factor 
in cloning of cells and embryos. A whole field of medical 
science has developed around human mtDNA. Nuclear 
DNA and mtDNA have been co-evolving synergistically 
in ensuring the well functioning of the organism that car-
ries them, and antagonistically in their race for long term 
existence. In this antagonism the nucleus is under pres-
sure to impose and maintain a uniparental inheritance of 
mtDNA and to increase its independence from mtDNA 
by “stealing” functional genes from it. The mtDNA, on the 
other hand, is under constant pressure to evade uniparen-
tal inheritance, avoid mutational meltdown, and increase 
its indispensability for the organism by incorporating 
information that is necessary for the organism’s function. 
Perhaps this complexity is expected form a molecule that 
started the most fundamental symbiosis for the eukaryotic 
world since two billion years ago. Most of the information 
we gained about the tree of life through the use of mtDNA 
remains valid. But this role of the mtDNA fades away rap-
idly as our reading of DNA sequences becomes more pow-
erful (and efficient). This being so, the future of mtDNA 
research must be in its role in the function of the organism 
and its value as a tool in the study of major evolutionary 
novelties in the history of life.
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