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HYPOTHESIS

Bone marrow stem cells to destroy 
circulating HIV: a hypothetical therapeutic 
strategy
Umesh Chandra Halder*

Abstract 

Human immunodeficiency virus (HIV) still poses enigmatic threats to human life. This virus has mastered in bypass-
ing anti retroviral therapy leading to patients’ death. Circulating viruses are phenomenal for the disease outcome. This 
hypothesis proposes a therapeutic strategy utilizing receptor-integrated hematopoietic, erythroid and red blood cells. 
Here, HIV specific receptors trap circulating viruses that enter erythrocyte cytoplasm and form inactive integration 
complex. This model depicts easy, effective removal of circulating HIV without any adverse effect.
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Background
Having around 36  years of understanding after its dis-
covery [1], scientists are still haunting a full and effective 
cure for human immunodeficiency virus (HIV) and its 
outcome acquired immunodeficiency syndrome (AIDS). 
Till date thousands of research efforts have revealed 
plethora of information regarding its life cycle [2–8] that 
characterized enigmatic AIDS. These immense knowl-
edge provided possible targets for AIDS therapy [3–5, 
8–11] that intervene entry, replication, packaging or bud-
ding of the virus leading to anti-retroviral therapy (ART) 
[12–17]. Apart from having diverse side-effects, ART has 
certain limitations too, as it only delays patients’ death 
but does not cure AIDS and also it only targets replicat-
ing HIVs and not the latent viral particles. Moreover, in 
doing so, it evokes successive immune compromising 
reactions making the situation worse. Circulating repli-
cative HIV remains the biggest threat toward successful 
AIDS therapy. Therefore, an effective strategy is essential 
that can confer resistance towards circulating HIV par-
ticles. If replicating HIV particles were somehow elimi-
nated, it would greatly reduce the effective viral burden 

from human body. On the other hand, latency provide 
base for long term existence of HIV without eliciting any 
immune response hiding deep inside immune organs 
[18–20]. Very recently, other than anti-retroviral drugs, 
such as experimentally promising HIV vaccine [21], 
neutralizing antibodies [22–24] and Clustered regularly 
interspaced short palindromic repeat-CRISPR-associated 
protein-9 nuclease (CRISPR-Cas 9) have shown effective-
ness against HIV [25, 26] with certain limitations [27].

The most fascinating event in the viral life cycle is that 
only a few viral proteins effectively control and direct the 
cellular pathways for their own sake. So, knowledge of 
viral proteins functioning in the virus life cycle and prop-
erly targeting them may confer successful elimination of 
HIV from human body.

Hypothesis
Previously transgenic mice showed effectiveness against 
Coxsackie virus B infection [28]. Here in this hypoth-
esis, a therapeutic strategy has been proposed for AIDS 
treatment that would utilize bone marrow stem cells. 
The proposed therapeutic strategy exploits receptor-inte-
grated red blood corpuscles (riRBC) to trap and finally 
kill the circulating HIVs. According to this model, RBC 
membranes can be loaded with cluster of differentiation 
4 (CD4) receptor along with C-C chemokine receptor 
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type 5 (CCR5) and C-X-C chemokine receptor type 4 
(CXCR4) co-receptors [4, 6, 7] that will specifically bind 
circulating HIV particles. The whole process can be 
divided into four stages. Firstly, hematopoietic stem cells 
(HSC) can be collected from bone marrow of O-negative 
(O−/−) healthy person to negate possible future immune 
reaction. Then, these cells will be stably transduced or 
transfected with CD4, CCR5 and CXCR4 genes using 
highly efficient viral (retroviral, lentiviral etc.) [29–31] 
or non-viral (episomal) based vectors [32–35], cloned 
from TH-lymphocyte genome, under the control of 
GATA-1 promoter [36] which can be sorted using over-
expressed HIV-receptors (Fig. 1). Secondly, after sorting 
the in  vitro receptor-integrated HSCs (riHSC) will be 
subjected to treatment with different growth and trans-
formation factors (GM-CSF, M-CSF, IL-3, SCF, TPO, 
FLT-3L, IL-11) in the medium to finally obtain recep-
tor-integrated burst-forming unit-erythrocyte (riBFU-
E) stem cell [37–49]. Moderate quantities of riBFU-Es 
will then be selected from the cell pool by FACS using 
CD45+GPA−IL-3R−CD34+CD36−CD71+-markers [50, 
51] and the rest will be treated in the culture medium 
using EPO (erythropoietin) [39, 43, 47] to yield huge pool 
of mature erythrocytes or riRBC having membrane inte-
grated CD4, CCR5 and CXCR4 (Fig. 2). Along with the 
growth factors, certain rejuvenating factors and strate-
gies [52–55] will be employed throughout the in  vitro 
process to curb stem cell aging which is an evident stem 

cell therapeutic problem [56]. Third step will employ a 
combination therapy by transfusing riRBCs along with 
the riBFU-E stem cells in the peripheral blood of AIDS 
patient. 

Soon after transfusion the riBFU-Es will find its way to 
the bone marrow by ‘stem-cell homing’ [57–60] and once 
in the specific niche the engineered stem cell will prolif-
erate to yield numerous riRBCs naturally from the bone 
marrow (Fig. 3). Bone marrow derived riRBCs along with 
the transfused riRBCs in the peripheral blood will then 
engage in receptor mediated capturing of circulating 
HIV particles. The fascinating feature of this engineered 
riRBC is that a single riRBC can confine numerous 
HIV particles till its natural destruction after 120  days 
in patient’s body. Once circulating HIVs bind with the 
receptor and co-receptor associated complex on the 
riRBC membrane by its envelop glycoproteins gp 120 and 
gp 41, viral membrane will readily fuse with cell mem-
brane leading to partial core shell uncoating and entry 
into riRBC cytoplasm [4, 6]. This event would immedi-
ately facilitate reverse transcription of genomic HIV-
RNA to yield pre-integration complex (PIC) [4, 6, 11, 61]. 
Up to this event HIV follows its normal path of infection 
but once PIC has been formed inside riRBC cytoplasm, 
due to the lack of nucleus it will be unable to complete 
its replication and life cycle and eventually will stall. Sin-
gle riRBC will carry numerous of such PICs and eventu-
ally be destroyed along with the riRBC by the action of 
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Fig. 1  HIV receptor integrated hematopoietic stem cell formation. Hematopoietic stem cells can be collected from healthy person having 
O-negative (O−/−) blood group. HIV receptor-CD4 and co-receptors-CCR5 and CXCR4 will then be transgenically introduced onto the hematopoi-
etic stem cell membranes by stably transducing or transfecting HSC with receptor genes under GATA-1 promoter control to form riHSC using viral 
or non-viral vectors. These receptor positive stem cells will be sorted using HIV receptors for next treatment. HIV human immunodeficiency virus, 
HSC hematopoietic stem cell, CD4 cluster of differentiation 4, CCR5 C-C chemokine receptor type 5, CXCR4 C-X-C chemokine receptor type 4, riHSC 
receptor-integrated hematopoietic stem cell
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macrophagic lytic enzymes in the spleen [62]. According 
to this hypothesis the proposed therapeutic strategy will 
greatly reduce the HIV burden from the AIDS patient 
abruptly, and effectively (Fig. 4).

Conclusions
The credentials of this hypothetical therapeutic strategy 
will be immense since (i) as the riHSC is a stem cell, once 
transduced cells are generated they will serve to produce 
riBFU-E and riRBC for a long period of time, (ii) riBFU-E 

as a stem cell will proliferate in the bone marrow for a 
long period of time to produce numerous riRBC natu-
rally without forming lymphoid lineages of cells (mod-
ern improved techniques permit successful, efficient 
and enormous production of RBCs from HSCs [37–49] 
and this will enable successful large scale production of 
riRBCs), (iii) both the riBFU-E and riRBC cells will not 
elicit any immune reaction as the cells are immunologi-
cally non-reactive taken from healthy O−/− person and 
(iv) the HIV trapping riRBCs will remain effective for 
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Fig. 2  In vitro formation of riBFU-E and mature riRBC from riHSC. The formed riHSC from the stem cells will then be treated with several in vitro 
growth and differentiation factors like GM-CSF, M-CSF, IL-3, SCF, TPO etc. to obtain BFU-E having HIV receptor-co-receptor complex. Then, these 
riBFU-E cells will be selected and isolated from other cell lineages by FACS using CD45+GPA−IL-3R−CD34+CD36−CD71+ markers to finally yield 
pool of pure riBFU-E cells. Another large population of cells having mixed population of riBFU-E and other lineages like lymphoid and myeloid cells 
will be treated by EPO to finally obtain only mature riRBC. GM-CSF granulocytemacrophage colony stimulating factor, M-CSF macrophage colony-
stimulating factor, IL-3 interleukin-3, IL-11 interleukin-11, SCF stem cell factor, TPO thrombopoietin, FLT-3L Fms-related tyrosine kinase 3 ligand, CMP 
common myeloid progenitor, MEP megakaryocyte/erythrocyte progenitor, BFU-E burst forming unit-erythroid, riRBC receptor integrated red blood 
corpuscle, FACS fluorescence-activated cell sorting, riBFU-E receptor integrated burst forming unit-erythroid, EPO erythropoietin
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around 120  days to continuously carry out its function 
to entrap circulating viruses. Moreover, early findings of 
HIV binding to RBCs have been reported that remain 
bound by Duffy antigen receptor (DARC) and spread 
infection to T-cells [63–66]. These findings further 
strengthen the present method as in presence of overex-
pressed HIV binding receptors on riRBC, HIV particles 
will readily enter the cell for their dead end. Another con-
cern may be with the proper alignment of overexpressed 
receptors facilitating HIV binding. But as T-cells derive 
from lymphoid lineage from HSCs, hence, it is expected 
that overexpressing CD4, CCR5 and CXCR4 receptor 
genes in HSCs will yield homologous receptor like on T 
cell for HIV binding under specific growth and differen-
tiation factor influence.

Safety is a big issue in genetically modified therapy so, 
proper safety measures and precautions should be taken 
[67–70] and whole procedure must be critically followed 
to prevent any accidental transmission of modified stem 
cells. Finally, it should be noted that effective strategies 
must combine this one to cope up inactive hidden latent 
viruses to completely remove HIV from human body and 
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Fig. 3  Combination therapy to transfuse riBFU-E and riRBC into HIV-
positive patient. riBFU-E and riRBCs will be transfused into peripheral 
blood of HIV patients as combination therapeutic strategy. Once 
inside patients’ body, riRBCs will be immediately functional to counter 
circulating HIV particles. On the other hand, riBFU-E from the periph-
eral blood will find its way to the bone marrow by stem cell homing 
and will normally differentiate into riRBC that will further amplify the 
efficiency of the therapy. riRBCs receptor integrated red blood corpus-
cles, riBFU-E receptor integrated burst forming unit-erythroid
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Fig. 4  Trapping HIVs within riRBC and destroying them. Once in blood, the riRBCs will engage to bind free HIV particles by the interaction of viral 
glycoproteins gp 120 and gp 41 with its membrane embedded CD4, CCR5 and CXCR4. After attachment fusion of viral and riRBC membrane will 
result in uncoating of viral core contents within cell cytoplasm leading to reverse transcription using its own transcriptase to form PIC. A single riRBC 
will be able to trap numerous HIV-PIC. However, once PIC formed it will remain inert as it will hardly find any genome to integrate and finally will be 
destroyed along with aged riRBC in spleen. HIVs human immunodeficiency viruses, CD4 cluster of differentiation 4, CCR5 C-C chemokine receptor 
type 5, riRBC receptor integrated red blood corpuscle, PIC pre integration complex
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these strategic riRBCs not only serve as a vehicle to fight 
HIV but little modification will enable it to battle numer-
ous other infections too.
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