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Abstract 

Background:  Alopecia or hair loss is a complex polygenetic and psychologically devastating disease affecting mil-
lions of men and women globally. Since the gene annotation and environmental knowledge is limited for alopecia, a 
systematic analysis for the identification of candidate biomarkers is required that could provide potential therapeutic 
targets for hair loss therapy.

Results:  We designed an interactive framework to perform a meta-analytical study based on differential expression 
analysis, systems biology, and functional proteomic investigations. We analyzed eight publicly available microarray 
datasets and found 12 potential candidate biomarkers including three extracellular proteins from the list of differen-
tially expressed genes with a p-value < 0.05. After expression profiling and functional analysis, we studied protein–
protein interactions and observed functional associations of source proteins including WIF1, SPON1, LYZ, GPRC5B, 
PTPRE, ZFP36L2, HBB, PHF15, LMCD1, KRT35 and VAV3 with target proteins including APCDD1, WNT1, WNT3A, SHH, 
ESRI, TGFB1, and APP. Pathway analysis of these molecules revealed their role in major physiological reactions includ-
ing protein metabolism, signal transduction, WNT, BMP, EDA, NOTCH and SHH pathways. These pathways regulate hair 
growth, hair follicle differentiation, pigmentation, and morphogenesis. We studied the regulatory role of β-catenin, Nf-
kappa B, cytokines and retinoic acid in the development of hair growth. Therefore, the differential expression of these 
significant proteins would affect the normal level and could cause aberrations in hair growth.

Conclusion:  Our integrative approach helps to prioritize the biomarkers that ultimately lessen the economic burden 
of experimental studies. It will also be valuable to discover mutants in genomic data in order to increase the identifi-
cation of new biomarkers for similar problems.
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Background
Alopecia or baldness is characterized by either patchy or 
complete loss of scalp hair [1]. It affects millions of men 
and women of all ethnic backgrounds and can be psy-
chologically shocking. It is a complex polygenic disease 
that can occur at any age affecting the general popula-
tion between 1 and 2% [1, 2]. The severity of the disease 

varies widely in the population, but very little is known 
about genetic and environmental factors. A comprehen-
sive understanding of the physiological mechanisms and 
signaling pathways involved in the progression of the dis-
ease is lacking. How inflammation and infectious agents, 
genetic and immunological factors are associated with 
the pathophysiology of alopecia is not clear. The cur-
rently available treatment options have variable efficacy 
and are not satisfactory [3, 4] due to limited understand-
ing of the causes and prognosis. The high prevalence and 
ineffective cure call for extensive research to establish 
better therapeutic strategies [5]. A systematic approach 
is required to identify candidate biomarkers regulating 
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major biological pathways linked to alopecia and poten-
tial therapeutic targets for its therapy.

Biomarkers are quantifiable traits that can be used 
to analyze normal as well as pathological processes [6]. 
These candidate molecules can be used for prediction 
of relapse, screening and to examine the response of the 
treatment of hair loss. Due to a lack of a suitable ana-
lytical framework, significant problems have been con-
fronted during the translation of candidate biomarkers 
from cDNA microarray research into proteomic investi-
gations for clinical applications [7–9]. The gene expres-
sion profiling of the epidermal and dermal keratinocytes 
is responsible for the activation of adipogenic factors 
and the levels of chemical-markers [58] including WIF1, 
GPRC5B, PTPRE, and LMCD1. These biological mol-
ecules are known to regulate hair growth cycle. Recent 
progress in genomics and proteomics analysis enabled 
the identification of many proteins and the discovery of 
new biomarkers.

Microarray and quantitative proteomics generally 
produce a massive amount of data that need to be fur-
ther examined to find biomarkers and drug targets. For 
genome-wide pathological analysis, numerous expression 
data sets are publicly available. Since data unavailabil-
ity and platform diversity pose major challenges to the 
analysis of human diseases, the meta-analysis approach 
has received significant consideration for analyzing vari-
ous datasets. This approach offers more detailed analy-
sis, statistical support, and significant results compared 
to any single study [10, 11]. Simulation-based differen-
tial gene expression has enabled the discovery of genetic 
variants and the generation of a quantitative gene expres-
sion scoring system that is critical for disease pathogen-
esis. In this study, we designed a systematic and logical 
computational-based meta-analytical framework involv-
ing systems biology approaches that would be helpful in 
identifying the causative agents of hair loss leading to the 
discovery of biomarkers. Differential expression analysis 
of eight microarray datasets was performed to determine 
candidate genes with significant differential regulation 
scoring system. Identification of key proteins as poten-
tial biomarkers based on their expression patterns has 
become possible through the use of databases which 
reveal the expression of several genes in tissues [12]. 
Comprehensive in silico systems-level biological analy-
sis was employed to determine significant alopecia bio-
markers through a multistep prioritization method. The 
physicochemical and functional characteristics of these 
protein molecules were also studied. Moreover, the pro-
tein–protein interactions and pathways networks showed 
the functional association of our candidate proteins with 
hair follicle development and regulation of β-catenin, Nf-
kappa B, cytokines, and retinoic acid levels. Probing of 

new biomarkers can deliver valuable insights in both bio-
logical and medical research after studying these molecu-
lar networks. It also increases biomarker discovery and 
can be used in large public datasets for better results in 
other diseases as well.

Methods
Identification and accession of eligible source data
The aim of the meta-analysis was to identify poten-
tial biomarkers for alopecia to effectively diagnose the 
causes of hair loss. Alopecia-related expression datasets 
were identified and retrieved from the Gene Expression 
Omnibus  (GEO) database excluding the non-human 
studies. Information extracted from each dataset covers 
GEO accession number, sample type, platform, number 
of samples, and gene expression data. This study exam-
ines the genes commonly covered by hgu133plus2 chips. 
In these datasets, the Affymetrix Gene Chip Human 
Genome U133Plus2.0 Array platform and the annota-
tion information (hgu133plus2) of probes were used to 
check differentially expressed genes. R-platform and 
BioConductor packages including Affy, AffyQCRep-
ort, AffyRNADegradation, AnnotationDbi, Annotate, 
Biobase, Limma, hgu133a2cdf and hgu133plus2cdf were 
employed to evaluate the statistical significance of the 
results (Additional file 1: Fig. S1).

Normalization and differential expression analysis
Normalization was used to compare microarray data 
sets. The pheno-data files of these data sets were organ-
ized in an identifiable format [13]. Background correc-
tion, i.e. for perfect matches (PM) and mismatches (MM), 
was calculated as given in equation (i). Robust Multi-
Array Analysis (RMA) was used to remove local artifacts 
and noise [14, 15].

where, PM is a perfect match, Background (BG) caused 
by optical noise and non-specific binding (S); ijk is the 
signal for probe j of probe set k on array i.

where, PM-data is a perfect match (hybridization) rep-
resenting combination of background (BG) and signals 
(S) of expression (E) for a set of probes (ijk), normalized 
(N) at default parameters. The signals of expressions were 
used to compute probe affinities. BioConductor “Array 
Quality Metrics” package was used to analyze the dataset 
that is normalized to the median expression level of each 
gene [14, 16, 17]. The expression value of a transcript 
having a p-value < 0.15 was considered as marginal log 

PMijk = BGijk + Sijk(i)

BG
(

PMijk

)

= E
[

Sijk |PMijk

]

> 0

Sijk ∼ Exp(�ijk)BGijk ∼ N (βi, σ 2)
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transformation and quantile normalization of arrays was 
used to bring them to the same scale. Gene–gene covari-
ance matrices of each data set, ignoring the missing val-
ues, were calculated across all arrays (54675affyids). The 
formula for transformation is:

where, F1 and F2 are distribution functions of the actual 
and reference chips, respectively.

We used the RMA-algorithm to calculate averages 
between probes in a probe set in order to get a summary 
of intensities. BioConductor “AffyRNADegradation” 
package was used for RNA-degradation analysis and to 
measure the quality of RNA in these samples [18, 19]. 
In this study, we identified DEGs in each dataset from 
genomic experiments by pairwise comparison [20] and 
the Benjamini–Hochberg method was used for multiple 
testing corrections [21]. DEG sand duplicates pots along 
with the measurement of quality weights were short-
listed. The moderated statistics were calculated, genes 
were ranked and p-values were calculated. FDR < 0.05 
(false discovery rate), p-value ≤ 0.05, Average Expres-
sion Level (AEL) ≥ 40% and absolute log fold change 
(logFC) > 1 were set as significant cut-off values [22].

Gene overlap significance analysis
Common genes among ranked DEGs (p-value ≤ 0.05) 
of each microarray dataset included in this study were 
identified using Compare Two Lists (Bioinformatics & 
Research Computing, Whitehead Institute http://barc.
wi.mit.edu/tools​/).

Subcellular localization and identification of secreted 
proteins
We predicted the subcellular localization of biomarker 
candidate proteins. We predicted the subcellular locali-
zation of alopecia-related significant DEGs using Sig-
nal P4.1 [23] and CELLO v.2.5 [24] to find the cellular 
compartments and categorize the selected proteins for 
effective applications. In most of the cases, the secretory 
and extracellular proteins of several cells are important 
sources of biomarker discovery as they indicate different 
states of the cells at a real-time [25]. These extracellular 
proteins that are secreted into the blood or plasma could 
be a convenient and easy way for patient clinical screen-
ing. The abnormal blood and plasma levels of such secre-
tory proteins in various conditions would relate to the 
pathological conditions. Amino acid sequences as FASTA 
input format were used. SignalP4.1server was used to 
predict classical secretory proteins with D-value > 0.45 
and SecretomeP2.0 server for non-classical secre-
tory proteins with a neural network (NN) score = 0.5 
[26]. Trans-membrane proteins were predicted using 

Xnorm = F2−1(F1(x))

TMHMMv.2. with default options [27]. For biomedical 
text mining, the predicted genes were mapped with alo-
pecia using the Comparative Toxicogenomics Database 
(CTD) to filter the information and related literature for 
the association of our selected differentially expressed 
genes with alopecia [28].

Expression profile and functional enrichment analysis
We performed expression profile analysis based on aver-
age values of expression in each sample of each dataset in 
order to determine variations in gene expression among 
different sample sets [29, 30]. The functional annotation, 
gene ontology (GO) and pathway enrichment analy-
sis [31, 32] of alopecia-related genes helped us to reveal 
biological functions and they were performed using the 
web-based FunRich [33], DAVID and Enrichr [34] anno-
tation tools.

Physicochemical and functional proteomic analysis
We analyzed the physicochemical properties of selected 
biomarker proteins by ExPASy ProtParam, ProtScale 
and Peptide Mass tools [35]. For empirical investigation 
and validation of the studies of two-dimensional (2-D) 
gels and mass spectrometry, these tools compute vari-
ous physical and chemical parameters of proteins. Prot-
Param was used to calculate various physicochemical 
parameters, ProtScale for hydrophobicity analysis and 
Peptide Mass was used for calculating the masses of pos-
sible cleavable peptides and any known post-translational 
modifications. For further structural and functional 
analysis, PDBePISA interactive tool [36] was employed 
for the exploration of macromolecular interfaces. We 
identified all known motifs in our protein samples by 
Motif Scan web server [37]. Large proteins that make up 
structural and functional units have evolved by duplica-
tion of internal sequence repeats. Therefore, we identi-
fied gapped approximate repeats and short composition 
biased in protein sequences using RADAR web server 
[38, 39].

Interactomic analysis
The protein–protein interactions (PPIs) reveal the topol-
ogy and functional interaction of proteins that are use-
ful to assess biological and pathological conditions [40, 
41]. We can infer the functional relationship of proteins 
through genomic associations. In the PPI network, each 
protein is considered to have a relationship with one or 
more gene-sets connected with biological or molecular 
functions [42]. Functions of this biological network may 
show great differences of activity in the disease state as 
compared to normal. The functional interactors of source 
genes were retrieved with a high confidence score (0.999) 
from the STRING version-10 [43] and HAPPI databases 

http://barc.wi.mit.edu/tools/
http://barc.wi.mit.edu/tools/
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[44]. For visualization and analysis of molecular net-
works, Cytoscape (version 3.2.1) was used [45] to identify 
the role of each seeder and target genes in alopecia and 
hair loss. In the network, the source nodes were catego-
rized according to the degree of association with alopecia 
and any disturbance in the functionality of genes contrib-
utes to a disease phenotype. In Cytoscape, Network Ana-
lyzer was used to calculate topological properties of the 
network.

Pathway‑molecular mechanisms analysis in alopecia
The pathway analysis could be an essential tool for bio-
marker discovery to better understand the underlying 
biochemical mechanisms. KEGG, Reactome and Wiki 
pathways were used to curate and map the candidate 
biomarkers. We constructed an integrated metabolic 
network of alopecia-related potential biomarkers using 
PathVisio version-3 tool [46]. In this integrated network, 
the potential mechanism of each genetic marker in each 
pathway was studied based on data mining.

Statistical analysis
We performed multiple testing to evaluate the signifi-
cance of candidate biomarkers. Average expressions of 
genes between two phenotypic classes were compared, 
for gene g. The two-sample t-statistic was calculated. The 
false discovery rate (FDR) [21] is commonly used in the 
multiple testing of high-dimensional genomic data as a 
criterion for controlling false positives [47]. FDR = V/R 
is defined as the expected proportion of false positives 
among the genes declared significant. Since no null 
hypothesis was rejected, V/R is considered to be 0 when 
R = 0. The determination of the number of biological rep-
licates is one of the current methods for controlling true 
positives. The variance was used to analyze the impor-
tance of differences between these groups. Data were 
expressed as mean ± SD. We performed all statistical 
analysis using the Limma-package of the R-platform ver-
sion 3.1.3. The decision rule was set to p-value < 0.05.

Results
cDNA datasets and normalization
We accessed eight GEO datasets related to alopecia, 
hair loss, and scalp hair follicles cases. The AffyBatch 
object has the size of the arrays: 1164 × 1164, 732 × 732, 
712 × 712, and 448 × 448 features with related Affyids 
(Table 1). Normalized distances between arrays of DNA 
chip showed the median expression level and the quan-
tile normalization of the probes. The MA-plots indi-
cated the quality of the individual array of each dataset 
after normalization (Fig.  1). The gene–gene covariance 
matrix across all arrays in each dataset by ignoring miss-
ing values was computed following a log-transformation 

of the arrays to make sure they were on the same scale. 
Decreased amount of RNA hybridization renders low-
quality results and lowers the total signal strength. The 
intensity gradient 3′/5′ depends on the degree of compet-
itive binding of specific and non-specific targets to a par-
ticular probe. The RNA degradation-plot of each dataset 
shows short probe sets near the 3′-end of the transcripts 
indicating that the 3′/5′ intensity gradient decreases by 
increasing degrees of saturation (Fig.  2). A single sum-
mary statistic for each array in the batch provides an 
assessment of the severity of RNA-degradation level 
(Additional file  2: Table  S1). The list of tools, databases 
and software used in this study are shown in Additional 
file 3: Table S2.

Identifying DEGs and screening for potential biomarkers
We identified a total of 100 DEGs in each microar-
ray dataset by pairwise comparison between biologi-
cally comparable groups. Among these DEGs, the top 
20 genes in each dataset were ranked and selected based 
on FDR (< 0.05), p-value (≤ 0.05) and logFC (> 1) param-
eters. From the list of ranked genes, 12 common genes 
(as potential biomarkers) of each dataset were identi-
fied (Additional file 4: Table S3). The sub-cellular locali-
zation of these genes indicates that WIF1, SPON1, and 
LYZ are extracellular, GPRC5B is membrane bound, 
PTPRE, VAV3, and HBB are cytoplasmic, ZFP36L2, 
PHF15, LMCD1, and KRT35 are nuclear while HBB 
is a mitochondrial-associated protein. We determined 
the transmembrane helices of these proteins based on 
a Hidden Markov Model (Additional file 5: Fig. S2). For 
disease-gene mapping, we found the role of these genes 
in alopecia and hair-loss and observed that SPON1 is the 
enriched term (Fig. 3).

Expression profiling and functional enrichment analysis
We analyzed the expression level of 12 candidate bio-
markers to observe the global picture of cellular func-
tions between the biological samples of each dataset. 
This profiling showed the variation in expression levels 
and the relative activity of these genes in hair loss. In the 
heat map, the major variations in the expression levels of 
PHF15, KRT35, HBB, LMCD1, and WIF1 of each dataset 
are observed (Fig.  4). Pathway-enriched terms indicate 
a significant association of DEGs in biological pathways 
related to alopecia (Fig.  5). The pathway enrichment 
analysis of these genes uncovered important background 
information about cell growth, energy pathways, metabo-
lism, and signal transduction (Table 2).

Identifying physicochemical and functional properties
Proteins possess different functional properties due 
to their dynamic physical, chemical, structural and 
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Table 1  List of cDNA datasets

S. no. Dataset 
accession no.

Total samples Tissues Species Conditions/
type

Platform Size of arrays AffyIDs References

1 GSE3058 10 Head hair fol-
licles

Homo sapiens Men vs 
women

GPL201[HG-
Focus] 
Affymetrix 
Human HG-
Focus Target 
Array

448 × 448 
features

8793 Kim et al. [66]

2 GSE21569 18 Scalp hair fol-
licles

Homo sapiens CD200-rich 
and CD34-
positive

GPL570 
[HG-U133_
Plus_2] 
Affym-
etrix Human 
Genome 
U133 Plus 
2.0 Array

1164 × 1164 
features

54,675 Garza et al. [67]

3 GSE31324 16 Hair fol-
licle dermal 
papilla

Homo sapiens Micro-dis-
sected DPs 
vs cultured 
DPs vs 
aggregated 
DPs

GPL571 [HG-
U133A_2] 
Affym-
etrix Human 
Genome 
U133A 2.0 
Array

732 × 732 
features

22,277 Ohyama et al. 
[72]

4 GSE36169 10 Scalp epider-
mis

Homo sapiens Bald vs haired GPL96 [HG-
U133A] 
Affym-
etrix Human 
Genome 
U133A Array

712 × 712 
features

22,283 Garza et al. [68]

5 GSE41680 8 Keratinocytes Homo sapiens Case vs control GPL571 [HG-
U133A_2] 
Affym-
etrix Human 
Genome 
U133A 2.0 
Array

732 × 732 
features

22,277 Gazel et al. [71]

6 GSE44765 18 Hair fol-
licle dermal 
papilla

Homo sapiens Intact tissue 
vs cultured 
tissue vs 
spheroid 
culture

GPL570 
[HG-U133_
Plus_2] 
Affym-
etrix Human 
Genome 
U133 Plus 
2.0 Array

1164 × 1164 
features

54,675 Higgins et al. 
[69]

7 GSE45512 10 Areata skin Homo sapiens Case vs control GPL570 
[HG-U133_
Plus_2] 
Affym-
etrix Human 
Genome 
U133 Plus 
2.0 Array

1164 × 1164 
features

54,675 Xing et al. [70]

8 GSE58573 7 Areata skin Homo sapiens Case vs control GPL570 
[HG-U133_
Plus_2] 
Affym-
etrix Human 
Genome 
U133 Plus 
2.0 Array

1164 × 1164 
features

54,675 Xing et al. [70]
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amphiphilic nature. To explore the relationship of these 
properties, we investigated the physicochemical prop-
erties of selected potential biomarkers to facilitate the 
validation of studies using ProtParam, ProtScale, and 
Peptide Mass tools (Table 3). The total number of amino 
acid (aa) residues of biomarker proteins including WIF1 
(379 aa), SPON1 (807 aa), PTPRE (700 aa) and LYZ 
(148 aa) showed a significant charge density while the 

hydrophobicity range at the C and N-terminus enabled 
an insight of the Îs-subunits of these proteins. The the-
oretical-pI indicated the solubility of these proteins at 
a given pH while the instability index showed that HBB 
and LYZ are more stable in  vitro as compared to other 
proteins.

For functional proteomic analysis, we summarized 
and visualized the macromolecular interfaces of these 

Fig. 1  MA plots: individual array quality of each dataset after normalization. M = log2 (I1) − log2 (I2), A = 1/2 [(log2 (I1) + log2 (I2)], where I1 is the 
intensity of the array studied and I2 is the intensity of a “pseudo-array” that consists of the median across arrays. Typically, we expect the mass of the 
distribution in an MA plot to be concentrated along the M = 0 axis, and there should be no trend in M as a function of A
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Fig. 2  RNA degradation plot of each dataset: side-by-side plot produced by plotAffyRNAdeg representing 5′ to 3′ trend presenting an assessment 
of the severity of degradation and significance level
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proteins. The known amino acid residues of these pro-
teins in the interface contact matrix are used to describe 
the molecular surface at the interface. The sequence 
motif indicated the pattern of biological significance 
involved in the shape of proteins and binding sites (Addi-
tional file 6: Fig. S3). We analyzed the motif sites of these 

proteins and identified the gapped approximate repeats 
and composition of residues for structural significance.

Interactomic analysis
To evaluate the topology and functional annotation of 
proteins, a protein–protein interaction (PPI) network 

Fig. 3  Screening steps to filter potential biomarkers for alopecia. The bar graph indicates the disease-gene mapping (alopecia-potential genes) 
using the comparative toxicogenomics database (CTD)
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was constructed. The network involved 111 nodes and 
104 edges (nodes represent proteins and edges denote 
interaction), containing high scoring interaction partners 
(confidence score: > 0.9). The PPI network was largely cat-
egorized into three neighborhoods: light yellow and red 

nodes indicate the secretory and cell-associated poten-
tial biomarkers while the remaining blue nodes represent 
the other target proteins. We found that these candidate 
biomarkers interact functionally with other important 
protein targets including APCDD1 [48], WNT1, WNT31 

Fig. 4  Expression profiling (indicates expression level) of potential biomarker candidates in each sample of each dataset

Fig. 5  The functional annotation and GO analysis indicate important molecular functions of selected biomarker proteins using FunRich and DAVID 
annotation tools
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[49], SHH [50], ESRI, TGFB1 [51] and APP [52]. This 
functional relationship shows the genomic connectivity 
of these proteins to disease phenotypes (Fig. 6). Of these 
proteins, SPON1 (spondin1, extracellular matrix protein) 
is principally interacting with SHH (sonic hedgehog pro-
tein facilitates androgen metabolic processes) and WIF1 
(WNT inhibitory factor1) while WNT3A (Wnt-3a pro-
tein involved in WNT signaling pathway and hair devel-
opment) is also interacting with WIF1. Similarly, PHF15 
(PHD finger protein-15) is associated with the family of 
PHF11 and PHF12 contributing to clinical phenotype. 
We assessed the topological properties of the network 
using Network Analyzer to classify and optimize the net-
work performance. After disease-gene mapping of these 
network genes using CTD, we observed more than 90 
target genes having a functional connection with can-
didate biomarkers (source/seeder genes) in alopecia. 
Among them, RAC1, LPAR1, MAPK1, ITM2B, LTF are 
the enriched terms (Additional file 7: Fig. S4).

Studying pathway models and associated mechanisms
We studied the role of potential biomarkers in associ-
ated pathways to explore the molecular mechanisms of 

these molecules in alopecia and hair loss. These pro-
teins are critically involved in the regulation of inte-
grated pathways including protein metabolism, signal 
transduction, Wnt, BMP, Eda, Notch, and Shh path-
ways. The genetic ontology of these pathways is related 
to hair follicle differentiation, hair follicle morphogen-
esis and hair shaft pigmentation (Fig.  7a). Therefore, 
hair growth and shape depend on these pathways which 
interact with epithelial and mesenchymal cells. Inte-
gration of Wnt with the Eda pathway upregulates the 
expression of Shh ligand. The cascade of reaction is 
unified with BMP signaling and regulation of epithe-
lial Notch expression [49]. The levels of β-catenin and 
Nf-kappa B [53], cytokines [35], retinoic acid [2] and 
the interaction cycle catalyzed by WIF1, SPON1, SHH, 
WNT3A, GPCR5, and LYZ are critical for modulating 
the signaling of Wnt, Shh, Notch and allied pathways. 
Regular expression patterns of these genes would affect 
the synthesis of these bio-molecules and dysregula-
tion of these pathways lead to certain abnormalities of 
hair growth. In Fig.  7b, a circos graph represents the 
expression levels and interconnection of differentially 
expressed genes in alopecia.

Table 2  Pathway enrichment analysis of potential biomarkers using Enrich tool

Pathway 
identifier

Pathway 
name

Entities 
found

Entities total Entities ratio Entities 
p-value

Entities FDR Reactions 
found

Reactions 
total

Reactions 
ratio

R-HSA-
3772470

Negative 
regulation 
of TCF-
dependent 
signaling by 
WNT

1 15 0.00172 0.00686 0.05726 1 5 5.96E−04

R-HSA-
5173214

O-glycosyla-
tion of TSR 
domain-
containing 
proteins

1 39 0.00447 0.01776 0.05726 2 2 2.38E−04

R-HSA-977225 Amyloid 
formation

1 57 0.00653 0.02588 0.05726 2 14 0.001668653

R-HSA-
5173105

O-linked gly-
cosylation

1 104 0.01192 0.04684 0.05726 2 18 0.002145411

R-HSA-392499 Metabolism of 
proteins

2 916 0.10501 0.05726 0.05726 4 443 0.052800954

R-HSA-201681 TCF depend-
ent signaling 
in response 
to WNT

1 198 0.02270 0.08775 0.08775 1 71 0.008462455

R-HSA-195721 Signaling by 
Wnt

1 294 0.03370 0.12815 0.12815 1 153 0.018235995

R-HSA-597592 Post-trans-
lational 
protein 
modification

1 416 0.04769 0.1775 0.17754 2 197 0.023480334

R-HSA-162582 Signal trans-
duction

1 2411 0.27640 0.72584 0.72584 1 1693 0.201787843



Page 11 of 16Muhammad et al. J of Biol Res-Thessaloniki            (2019) 26:2 

Statistical analysis
We cross-validated our analysis by statistical algorithms. 
The significance of biomarker proteins in alopecia and 
hair loss between two phenotypes was tested based on 
logFC (> 1), Ave Expr (AEL ≥ 40%), p-value (< 0.05) and 
t-test statistics (Prob > |t|: 0.92944) (Fig.  8). We deter-
mined the false discovery rate (FDR) as a criterion for 
controlling false positives.

Discussion
In recent years, the advances in technological devel-
opments have opened up a new era in systems biology, 
structural, functional and clinical proteomics. Specifi-
cally, functional proteomics helps us to understand the 
fundamental mechanisms of various pathophysiologi-
cal states and reveals new opportunities for biomarker 
discovery. The current study critically explores the 
variations of gene expression levels in alopecia and hair 
loss. The meta-analysis provides a list of differentially 
expressed genes of scalp epidermis, hair follicle, der-
mal papilla and correlates with metabolic pathways. The 
expression profiling of these genes is indicative of the 
obvious differences among different tissue samples of 
clinical phenotypes.

We used various bioinformatics software, tools, and 
databases to systematically investigate expression data in 
order to discover specific protein biomarkers. The com-
putational framework employed provides a logical step 
of the meta-analysis of cDNA microarray datasets asso-
ciated with the exploration of DEGs. The steps imple-
mented in this study are consistent and complement 
those technological pipelines described earlier [54, 55].

We filtered 12 common genes as potential biomarkers, 
namely WIF1, SPON1, LYZ, GPRC5B, PTPRE, ZFP36L2, 
HBB, PHF15, LMCD1, KRT35, HBB, and VAV3 (p < 0.05), 
from the list of 100 DEGs based on physicochemical and 
functional analysis. The dysregulation and functional 
role of these differentially expressed genes have also been 
studied in hair physiology [35, 49, 53]. In the protein–
protein interaction network, we identified that these pos-
sible biomarkers are functionally associated with other 
interacting protein targets including APCDD1, WNT1, 
WNT31 [49], SHH [50], ESRI, TGFB1 [51] and APP [52]. 
The APCDD1 gene inhibits the WNT signaling pathway 
(WIF1), ultimately interfering with BMP, Eda, and Notch 
pathways, and this aberration causes alopecia and hair 
loss [48]. We observed more than 90 target proteins hav-
ing a functional connection with candidate source genes 
in alopecia.

Table 3  Physicochemical properties of selected potential biomarkers using ProtParam, ProtScale, and PeptideMass tools

Potential 
biomarkers

Formula Total 
amino 
Acids

Molecular 
weight

Theoretical 
pI

Ext. 
coefficient

Estimated 
half-life 
(h)

Instability 
index (II)

Hydropathicity 
(GRAVY)

Monoisotopic 
mass

WIF1 C1813H2808N518
O524S40

379 415,27.80 7.84 46,920 30.0 54.70 − 0.264 41,499.78

SPON1 C3929H6190N111

4O1225S73

807 90,973.40 5.85 149,205 30.0 61.34 − 0.604 90,913.59

LYZ C719H1146N220
O207S11

148 16,537.00 9.38 36,940 30.0 27.71 − 0.195 16,526.28

GPRC5B C2072H3244N526
O542S23

6407 44,933.13 8.06 65,930 30.0 42.45 0.52 44,903.60

PTPRE C3622H5651N979
O1040S34

700 80,641.69 6.57 97,010 30.0 35.24 − 0.342 80,589.99

ZFP36L2 C2219H3438N650
O702S19

494 51,062.78 8.52 15,900 30.0 69.83 − 0.387 51,030.80

HBB C729H1128N196
O202S4

147 15,998.41 6.74 15,595 30.0 6.16 0.014 15,988.29

HBB C497H770N134O
146S2

101 11,022.51 6.03 12,490 7.2 1.52 − 0.239 11,015.64

PHF15 C3798H6018N107

8O1203S43

789 87,408.65 5.15 92,360 30.0 57.12 − 0.639 87,353.08

LMCD1 C1782H2822N502
O539S29

365 40,832.79 8.27 53,860 30.0 47.12 − 0.565 40,806.07

KRT35 C2144H3464N620
O715S31

455 50,360.67 4.85 37,245 30.0 61.99 − 0.445 50,328.51

VAV3 C3857H6055N105

5O1148S35

753 86,695.99 6.41 88,920 30.0 42.18 − 0.567 86,640.81



Page 12 of 16Muhammad et al. J of Biol Res-Thessaloniki            (2019) 26:2 

Fig. 6  Protein–Protein Interaction Network. Interaction of seeder/source nodes (light yellow and red) with target nodes (light blue). The topological 
properties of the network were analyzed by Network Analyzer

Fig. 7  Reactomic analysis and molecular mechanisms in alopecia. a The role of integrated pathways in hair follicle differentiation, hair follicle shape, 
hair shaft pigmentation, and hair development. The pathways have been mapped using KEGG, Reactome and Wiki Pathways. Color codes are used 
to describe reaction steps of pathway model. b Circos Graph generated by Gene Terrain indicates the expression levels and the relationship of 
differentially expressed genes of each pathway
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These candidate biomarkers are involved in the regu-
lation of biological pathways including protein metabo-
lism, signal transduction, Wnt, BMP, Eda, Notch, and 
Shh pathways [35, 53, 56]. The gene ontology (GO) is 
related to hair follicle differentiation, hair follicle mor-
phogenesis and hair shaft pigmentation. Therefore, hair 
growth and shape depend on these important pathways 
that interact with epithelial and mesenchymal cells. 
WNT starts signaling through the signal mediator EDA/
EDAR/NF-κB, i.e. nuclear factor kappa-light-chain-
enhancer of activated B-cells, by upregulating Shh ligand 
expression. The pathway cycle is integrated with BMP 
signaling and upregulation of epithelial Notch expres-
sion [49]. Therefore, abnormalities of these pathways lead 
to irregularities of hair growth. The levels of β-catenin 
and Nf-kappa B are critical to modulate the signaling of 
WNT, SHH, and allied pathways [53]. Therefore, muta-
tions in WIF1 would affect this level and hair growth. The 
cytokines [35] and retinoic acid are known to change skin 
and hair growth [2]. It has been observed that SPON1, 
GPC5B, and LYZ metabolize the proteins to synthesize 
retinoic acid and cytokines. The irregular expression 
pattern of these genes would change the normal level of 

these biomolecules affecting hair follicle function. The 
pathway modeling and integrated network-based analy-
sis showed that these potential biomarkers are important 
for hair follicle development and variations in β-catenin, 
Nf-kappa B, cytokines and retinoic acid can be consid-
ered as diagnostic indicators of alopecia and hair loss. 
The protein–protein interaction network provides test-
able assumptions, albeit validation can only be justified 
through experimental studies.

The differential expression of WIF1 [57], PTPRE, 
HBB, and LMCD1 is associated with hair loss, morpho-
genesis, and alopecia. SPON1 and GPRC5B catalyze 
post-translational modifications and are integrated with 
WNT, Eda, Notch, Shh, and RAIG1 pathways. SPON1 is 
over-expressed in growing hair follicles [58, 59]. GPRC5 
is associated with the differentiation of cells involved 
in the production of hard keratin and cortical cells of 
the hair shaft [59] and its dysregulation cause hair loss. 
LYZ-Ndufs4 showed a similar phenotype and disease 
conditions with significant attenuation of the alopecia 
[60]. Protein tyrosine phosphatase (PTPRE) and PHD 
finger protein 15 (PHF15) are differentially expressed in 
bald individuals responsible for androgenetic alopecia 

Fig. 8  Statistical validation of potential biomarkers based on logFC, AveExpr, p-value and t-test statistics (classifier score)
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[61]. In animals, it has been reported that the down-reg-
ulation of ZFP36L2 gene that synthesizes a proline-rich 
zinc finger protein causes patchy alopecia [62]. The dif-
ferential expression of LIM and cysteine-rich domains 1 
(LMCD1) causes the aberration of Notch and Hedgehog 
signaling pathways leading to alopecia and hair-loss [63]. 
Under-expression of KRT35 and VAV3 genes level down 
the keratins and vav-3 guanine nucleotide exchange fac-
tor respectively, affecting the signaling pathways and 
hair growth [64, 65]. This study suggests that differential 
expression of these genes in both normal and mild state 
may be used as clinical biomarkers. We propose that the 
combination of several indicators may be more useful in 
diagnostic sensitivity and specificity instead of using a 
single biomarker.

Conclusions
Systems biology studies of cDNA datasets helped us to 
identify potential DEGs of alopecia and hair loss. The 
methodological framework used revealed genome to 
phenome association in alopecia and hair loss. Our pri-
oritization approach has found 12 potential physiologi-
cal biomarkers of alopecia connected with other vital 
proteins including SHH and APCDD1. However, further 
molecular studies and research should be considered to 
authenticate the role of these genes in alopecia for effec-
tive treatment.
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