Tujjar O, Mineo G, Dell’Anna A, Poyatos-Robles B, Donadello K, Scolletta S, et al. Acute kidney injury after cardiac arrest. Crit Care. 2015;19:169.
Article
PubMed
PubMed Central
Google Scholar
Weisberg LS, Allgren RL, Genter FC, Kurnik BRC, The Auriculin Anaritide Acute Renal Failure Study Group. Cause of acute tubular necrosis affects its prognosis. Arch Intern Med. 1997;157:1833–8.
Article
CAS
PubMed
Google Scholar
Roman-Pognuz E, Elmer J, Rittenberger JC, Guyette FX, Berlot G, De Rosa S, et al. Markers of cardiogenic shock predict persistent acute kidney injury after out of hospital cardiac arrest. Heart Lung. 2019;48:126–30.
Article
PubMed
Google Scholar
Morozumi K, Takeda A, Otsuka Y, Horike K, Gotoh N, Narumi S, et al. Reviewing the pathogenesis of antibody-mediated rejection and renal graft pathology after kidney transplantation. Nephrology (Carlton). 2016;21(Suppl 1):4–8.
Article
CAS
Google Scholar
Jang HR, Rabb H. The innate immune response in ischemic acute kidney injury. Clin Immunol. 2009;130:41–50.
Article
CAS
PubMed
Google Scholar
Bonavia A, Singbartl K. A review of the role of immune cells in acute kidney injury. Pediatr Nephrol. 2018;33:1629–39.
Article
PubMed
Google Scholar
Le Dorze M, Legrand M, Payen D, Ince C. The role of the microcirculation in acute kidney injury. Curr Opin Crit Care. 2009;15:503–8.
Article
PubMed
Google Scholar
Friedewald JJ, Rabb H. Inflammatory cells in ischemic acute renal failure. Kidney Int. 2004;66:486–91.
Article
PubMed
Google Scholar
Bonventre JV, Zuk A. Ischemic acute renal failure: an inflammatory disease? Kidney Int. 2004;66:480–5.
Article
CAS
PubMed
Google Scholar
Baban B, Hoda N, Malik A, Khodadadi H, Simmerman E, Vaibhav K, et al. Impact of cannabidiol treatment on regulatory T-17 cells and neutrophil polarization in acute kidney injury. Am J Physiol Ren Physiol. 2018;315:F1149–F1158158.
Article
CAS
Google Scholar
Jiang L, Liu X-Q, Ma Q, Yang Q, Gao L, Li H-D, et al. hsa-miR-500a-3P alleviates kidney injury by targeting MLKL-mediated necroptosis in renal epithelial cells. FASEB J. 2019;33:3523–35.
Article
CAS
PubMed
Google Scholar
Coca SG, Yusuf B, Shlipak MG, Garg AX, Parikh CR. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;53:961–73.
Article
PubMed
PubMed Central
Google Scholar
Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 2002;110:341–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bechtel W, McGoohan S, Zeisberg EM, Müller GA, Kalbacher H, Salant DJ, et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med. 2010;16:544–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao Q, Harris DCH, Wang Y. Macrophages in kidney injury, inflammation, and fibrosis. Physiology (Bethesda). 2015;30:183–94.
CAS
Google Scholar
Liu Y, Wang Y, Ding W, Wang Y. Mito-TEMPO alleviates renal fibrosis by reducing inflammation, mitochondrial dysfunction, and endoplasmic reticulum stress. Oxid Med Cell Longev. 2018. https://doi.org/10.1155/2018/5828120.
Article
PubMed
PubMed Central
Google Scholar
Yano T, Nozaki Y, Kinoshita K, Hino S, Hirooka Y, Niki K, et al. The pathological role of IL-18Rα in renal ischemia/reperfusion injury. Lab Invest. 2015;95:78–91.
Article
CAS
PubMed
Google Scholar
Hayama T, Matsuyama M, Funao K, Tanaka T, Tsuchida K, Takemoto Y, et al. Benefical effect of neutrophil elastase inhibitor on renal warm ischemia-reperfusion injury in the rat. Transplant Proc. 2006;38:2201–2.
Article
CAS
PubMed
Google Scholar
Roelofs JJTH, Rouschop KMA, Leemans JC, Claessen N, de Boer AM, Frederiks WM, et al. Tissue-type plasminogen activator modulates inflammatory responses and renal function in ischemia reperfusion injury. J Am Soc Nephrol. 2006;17:131–40.
Article
CAS
PubMed
Google Scholar
Turunen AJ, Fernández JA, Lindgren L, Salmela KT, Kyllönen LE, Mäkisalo H, et al. Activated protein C reduces graft neutrophil activation in clinical renal transplantation. Am J Transplant. 2005;5:2204–12.
Article
CAS
PubMed
Google Scholar
Thiele JR, Zeller J, Kiefer J, Braig D, Kreuzaler S, Lenz Y, et al. A conformational change in C-reactive protein enhances leukocyte recruitment and reactive oxygen species generation in ischemia/reperfusion injury. Front Immunol. 2018;9:675.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mizuno S, Nakamura T. Prevention of neutrophil extravasation by hepatocyte growth factor leads to attenuations of tubular apoptosis and renal dysfunction in mouse ischemic kidneys. Am J Pathol. 2005;166:1895–905.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kyriakopoulos G, Tsaroucha AK, Valsami G, Lambropoulou M, Kostomitsopoulos N, Christodoulou E, et al. Silibinin improves TNF-α and M30 expression and histological parameters in rat kidneys after hepatic ischemia/reperfusion. J Invest Surg. 2018;31:201–9.
Article
PubMed
Google Scholar
Rouschop KMA, Roelofs JJTH, Claessen N, da Costa MP, Zwaginga J-J, Pals ST, et al. Protection against Renal ischemia reperfusion injury by CD44 disruption. J Am Soc Nephrol. 2005;16:2034–43.
Article
CAS
PubMed
Google Scholar
Kokura S, Wolf RE, Yoshikawa T, Ichikawa H, Neil Granger D, Yee AT. Endothelial cells exposed to anoxia/reoxygenation are hyperadhesive to T-lymphocytes: kinetics and molecular mechanisms. Microcirculation. 2000;7:13–23.
Article
CAS
PubMed
Google Scholar
Lu CY, Penfield JG, Kielar ML, Vazquez MA, Jeyarajah DR. Hypothesis: Is renal allograft rejection initiated by the response to injury sustained during the transplant process. Kidney Int. 1999;55:2157–68.
Article
CAS
PubMed
Google Scholar
Lemay S, Rabb H, Postler G, Singh AK. Prominent and sustained up-regulation of gp130-signaling cytokines and the chemokine MIP-2 in murine renal ischemia-reperfusion injury. Transplantation. 2000;69:959–63.
Article
CAS
PubMed
Google Scholar
Mikolajczyk TP, Nosalski R, Szczepaniak P, Budzyn K, Osmenda G, Skiba D, et al. Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension. FASEB J. 2016;30:1987–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rabb H, Daniels F, O’Donnell M, Haq M, Saba SR, Keane W, et al. Pathophysiological role of T lymphocytes in renal ischemia-reperfusion injury in mice. Am J Physiol Ren Physiol. 2000;279:F525–F531531.
Article
CAS
Google Scholar
Richards JA, Bucsaiova M, Hesketh EE, Ventre C, Henderson NC, Simpson K, et al. Acute liver injury is independent of B cells or immunoglobulin M. PLoS ONE. 2015;10:e0138688.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bosio CM, Gardner D, Elkins KL. Infection of B cell-deficient mice with CDC 1551, a clinical isolate of Mycobacterium tuberculosis: delay in dissemination and development of lung pathology. J Immunol. 2000;164:6417–25.
Article
CAS
PubMed
Google Scholar
Cronkite DA, Strutt TM. The regulation of inflammation by innate and adaptive lymphocytes. J Immunol Res. 2018;2018:1467538.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rivera A, Chen C-C, Ron N, Dougherty JP, Ron Y. Role of B cells as antigen-presenting cells in vivo revisited: antigen-specific B cells are essential for T cell expansion in lymph nodes and for systemic T cell responses to low antigen concentrations. Int Immunol. 2001;13:1583–93.
Article
CAS
PubMed
Google Scholar
Yokota N, Daniels F, Crosson J, Rabb H. Protective effect of T cell depletion in murine renal ischemia-reperfusion injury. Transplantation. 2002;74:759–63.
Article
CAS
PubMed
Google Scholar
Burne-Taney MJ, Ascon DB, Daniels F, Racusen L, Baldwin W, Rabb H. B Cell Deficiency Confers Protection from Renal Ischemia Reperfusion Injury. J Immunol. 2003;171:3210–5.
Article
CAS
PubMed
Google Scholar
Burne-Taney MJ, Yokota-Ikeda N, Rabb H. Effects of combined T- and B-cell deficiency on murine ischemia reperfusion injury. Am J Transplant. 2005;5:1186–93.
Article
PubMed
Google Scholar
Ascon DB, Lopez-Briones S, Liu M, Ascon M, Savransky V, Colvin RB, et al. Phenotypic and functional characterization of kidney-infiltrating lymphocytes in renal ischemia reperfusion injury. J Immunol. 2006;177:3380–7.
Article
CAS
PubMed
Google Scholar
De Greef KE, Ysebaert DK, Dauwe S, Persy V, Vercauteren SR, Mey D, et al. Anti-B7-1 blocks mononuclear cell adherence in vasa recta after ischemia. Kidney Int. 2001;60:1415–27.
Article
PubMed
Google Scholar
Li L, Huang L, Sung SSJ, Lobo PI, Brown MG, Gregg RK, et al. NKT cell activation mediates neutrophil IFN-γ production and renal ischemia-reperfusion injury. J Immunol. 2007;178:5899–911.
Article
CAS
PubMed
Google Scholar
Lee HT, Kim M, Kim M, Kim NL, Billings FT 4th, D’Agati VD, et al. Isoflurane protects against renal ischemia and reperfusion injury and modulates leukocyte infiltration in mice. Am J Physiol Renal Physiol. 2007;293:F713–F722722.
Article
CAS
PubMed
Google Scholar
Kazamias P, Kotzampassi K, Koufogiannis D, Eleftheriadis E. Influence of enteral nutrition-induced splanchnic hyperemia on the septic origin of splanchnic ischemia. World J Surg. 1998;22:6–11.
Article
CAS
PubMed
Google Scholar
Stavrou G, Arvanitidis K, Filidou E, Fotiadis K, Grosomanidis V, Ioannidis A, et al. Combined enteral and parenteral glutamine supplementation in endotoxemic swine: effects on portal and systemic circulation levels. Med Princ Pract. 2019;27:570–8.
Article
Google Scholar
Jones EA, Shoskeses DA. The effect of mycophenolate mofetil and polyphenolic bioflavonoids on renal ischemia reperfusion injury and repair. J Urol. 2000;163:999–1004.
Article
CAS
PubMed
Google Scholar
Suleiman M, Cury PM, Pestana JOM, Burdmann EA, Bueno V. FTY720 prevents renal T-cell infiltration after ischemia/reperfusion injury. Transplant Proc. 2005;37:373–4.
Article
CAS
PubMed
Google Scholar
Burne MJ, Daniels F, El Ghandour A, Mauiyyedi S, Colvin RB, O’Donnell MP, et al. Identification of the CD4+ T cell as a major pathogenic factor in ischemic acute renal failure. J Clin Invest. 2001;108:1283–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thadhani R, Pascual M, Bonventre JV. Acute renal failure. N Engl J Med. 1996;334:1448–600.
Article
CAS
PubMed
Google Scholar
Yokota N, Burne-Taney M, Racusen L, Rabb H. Contrasting roles for STAT4 and STAT6 signal transduction pathways in murine renal ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2003;285:F319–F325325.
Article
CAS
PubMed
Google Scholar
Kelly KJ, Williams WW Jr, Colvin RB, Meehan SM, Springer TA, Gutiérrez-Ramos JC, et al. Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest. 1996;97:1056–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okada S, Shikata K, Matsuda M, Ogawa D, Usui H, Kido Y, et al. Intercellular adhesion molecule-1-deficient mice are resistant against renal injury after induction of diabetes. Diabetes. 2003;52:2586–93.
Article
CAS
PubMed
Google Scholar
Springer TA. Adhesion receptors of the immune system. Nature. 1990;346:425–34.
Article
CAS
PubMed
Google Scholar
O’Donnell MP, Burne M, Daniels F, Rabb H. Utility and limitations of serum creatinine as a measure of renal function in experimental renal ischemia-reperfusion injury. Transplantation. 2002;73:1841–4.
Article
PubMed
Google Scholar