Kardong KV. Vertebrates. Comparative anatomy, function, evolution. 7th ed. New York: McGrow-Hill; 2014.
Google Scholar
Lambert Y. Why should we closely monitor fecundity in marine fish populations. J Northwest Atl Fish Sci. 2008;41:93–106.
Article
Google Scholar
May AW. Fecundity of Atlantic cod. J Fish Res Board Can. 1967;24:1531–51.
Article
Google Scholar
Haldorson L, Love M. Maturity and fecundity in the rockfishes, Sebastes spp., a review. Mar Fish Rev. 1991;53:25–31.
Google Scholar
Thibault RE, Schultz RJ. Reproductive adaptations among viviparous fishes (Cyprinodontiformes: Poeciliidae). Evolution. 1978;32:320–33.
Article
PubMed
Google Scholar
Winemiller KO, Rose KA. Patterns of life-history diversification in North American fishes: implications for population regulation. Can J Fish Aquat Sci. 1992;49:2196–218.
Article
Google Scholar
Yeager A, Commito J, Wilson A, Bower D, Schwarzkopf L. Sex, light, and sound: location and combination of multiple attractants affect probability of cane toad (Rhinella marina) capture. J Pest Sci. 2014;87:323–9.
Article
Google Scholar
Oliveira BF, São-Pedro VA, Santos-Barrera G, Penone C, Costa GC. AmphiBIO, a global database for amphibian ecological traits. Sci Data. 2017;4:170123.
Article
PubMed
PubMed Central
Google Scholar
Amphibia Web; 2020. https://amphibiaweb.org. Accessed Jan 2020
Santos JT. Natural history of Rhinella jimi (Anura; Bufonidae): an invasive species in Fernando de Noronha [MSc. thesis]. Universidade Estadual de Campinas; 2011.
Diamond AW. Breeding biology and conservation of hawksbill turtles, Eretmochelys imbricata L., on Cousin Island, Seychelles. Biol Conserv. 1976;9:199–215.
Article
Google Scholar
Kratochvíl L, Frynta D. Body-size effect on egg size in eublepharid geckos (Squamata: Eublepharidae), lizards with invariant clutch size: negative allometry for egg size in ectotherms is not universal. Biol J Linn Soc. 2006;88:527–32.
Article
Google Scholar
Barclay RMR. Constraints on reproduction by flying vertebrates: energy and calcium. Am Nat. 1994;144:1021–31.
Article
Google Scholar
Sibly RM, Witt CC, Wright NA, Venditti C, Jetz W, Brown JH. Energetics, lifestyle, and reproduction in birds. Proc Natl Acad Sci USA. 2012;109:10937–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagy KA, Girard IA, Brown TK. Energetics of free-ranging mammals, reptiles and birds. Annu Rev Nutr. 1999;19:247–77.
Article
CAS
PubMed
Google Scholar
Lavigne DM. Similarity in energy budgets of animal populations. J Anim Ecol. 1982;51:195–206.
Article
Google Scholar
Wieser W. A new look at energy conversion in ectothermic and endothermic animals. Oecologia. 1985;66:506–10.
Article
CAS
PubMed
Google Scholar
Bonnet X, Bradshaw D, Shine R. Capital versus income breeding: an ectothermic perspective. Oikos. 1998;83:333–42.
Article
Google Scholar
Clarke A. Energy flow in growth and production. Trends Ecol Evol. 2019;34:502–9.
Article
PubMed
Google Scholar
Burton TM, Likens GE. Energy flow and nutrient cycling in salamander populations in the Hubbard Brook experimental forest. N Hampshire Ecol. 1975;56:1068–80.
CAS
Google Scholar
Pough FH. The advantages of ectothermy for tetrapods. Am Nat. 1980;115:92–112.
Article
Google Scholar
King B, Lee MSY. Ancestral state reconstruction, rate heterogeneity, and the evolution of reptile viviparity. Syst Biol. 2015;64:532–44.
Article
CAS
PubMed
Google Scholar
Moore JR, Varricchio DJ. The evolution of diapsid reproductive strategy with inferences about extinct taxa. PLoS ONE. 2016;11:e0158496.
Article
PubMed
PubMed Central
CAS
Google Scholar
Farmer CG. Parental care: the key to understanding endothermy and other convergent features in birds and mammals. Am Nat. 2000;155:326–34.
Article
CAS
PubMed
Google Scholar
Case TJ. Endothermy and parental care in the terrestrial vertebrates. Am Nat. 1978;112:861–74.
Article
Google Scholar
Gans C. An overview of parental care among the Reptilia. Adv Study Behav. 1996;25:145–57.
Article
Google Scholar
Halliwell B, Uller T, Holland BR, While GM. Live bearing promotes the evolution of sociality in reptiles. Nat Commun. 2017;8:2030.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shine R. Parental care in reptiles, Ecology B. Defense and life history. In: Gans C, Huey RB, editors. Biology of the Reptilia, vol. 16. New York: Liss; 1988. p. 275–330.
Google Scholar
Doody JS, Freedberg S, Keogh JS. Communal egg-laying in reptiles and amphibians: evolutionary patterns and hypotheses. Q Rev Biol. 2009;84:229–52.
Article
PubMed
Google Scholar
While GM, Halliwell B, Uller T. The evolutionary ecology of parental care in lizards. In: Rheubert JL, Siegel DS, Trauth SE, editors. Reproductive biology and phylogeny of reptiles. Enfield: Science Publishers; 2015. p. 590–620.
Google Scholar
Beekman M, Thompson M, Jusup M. Thermodynamic constraints and the evolution of parental provisioning in vertebrates. Behav Ecol. 2019;30:583–91.
Article
Google Scholar
Balshine S. Patterns of parental care in vertebrates. In: Royle NJ, Smiseth PT, Kölliker M, editors. The evolution of parental care. Oxford: Oxford University Press; 2012. p. 62–80.
Chapter
Google Scholar
Watson GS, Green DW, Watson JA. Observations supporting parental care by a viviparous reptile: aggressive behaviour against predators demonstrated by Cunningham’s skinks. Aust J Zool. 2020;67:180–3.
Article
Google Scholar
Trillmich F. Are endotherms emancipated? Some considerations on the cost of reproduction. Oecologia. 1986;69:631–3.
Article
PubMed
Google Scholar
Gregory PT. Northern lights and seasonal sex: the reproductive ecology of cool-climate snakes. Herpetologica. 2009;65:1–13.
Article
Google Scholar
Zhang L, Guo K, Zhang GZ, Lin LH, Ji X. Evolutionary transitions in body plan and reproductive mode alter maintenance metabolism in squamates. BMC Evol Biol. 2018;18:45.
Article
PubMed
PubMed Central
Google Scholar
Stearns SC. Life-history tactics: a review of the ideas. Q Rev Biol. 1976;51:3–47.
Article
CAS
PubMed
Google Scholar
Bruton MN. Trends in the life-history styles of vertebrates: an introduction to the second ALHS volume. Environ Biol Fishes. 1990;28:7–16.
Article
Google Scholar
Winemiller KO. Life history strategies, population regulation, and implications for fisheries management. Can J Fish Aquat Sci. 2005;62:872–85.
Article
Google Scholar
Duellman WE. Alternative life-history styles in anuran amphibians: evolutionary and ecological implications. Dordrecht: Springer; 1989. p. 101–26.
Book
Google Scholar
Crump ML. Parental care among the amphibia. In: Advances in the study of behavior. Amsterdam: Elsevier; 1996. p. 109–44.
Google Scholar
Wake MH. Fetal adaptations for viviparity in amphibians. J Morphol. 2015;276:941–60.
Article
PubMed
Google Scholar
Vági B, Végvári Z, Liker A, Freckleton RP, Székely T. Parental care and the evolution of terrestriality in frogs. Proc Biool Sci. 2019;286:20182737.
Google Scholar
Tinkle DW, Wilbur HM, Tilley SG. Evolutionary strategies in lizard reproduction. Evolution. 1970;24:55–74.
Article
PubMed
Google Scholar
Dunham AE, Miles DB, Reznick DN, Ecology B. Life history patterns in squamate reptiles. In: Gans C, Huey RB, editors. Biology of the Reptilia. New York: Liss; 1988. p. 441–522.
Google Scholar
Wourms JP, Lombardi J. Reflections on the evolution of piscine viviparity. Am Zool. 1992;32:276–93.
Article
Google Scholar
Gross MR, Sargent RC. The evolution of male and female parental care in fishes. Am Zool. 1985;25:807–22.
Article
Google Scholar
Sargent RC, Taylor PD, Gross MR. Parental care and the evolution of egg size in fishes. Am Nat. 1987;129:32–46.
Article
Google Scholar
Vila-Gispert A, Moreno-Amich R, García-Berthou E. Gradients of life-history variation: an intercontinental comparison of fishes. Rev Fish Biol Fisher. 2002;12:417–27.
Article
Google Scholar
Summers K, Sea McKeon C, Heying H. The evolution of parental care and egg size: a comparative analysis in frogs. Proc R Soc Lond B. 2006;273:687–92.
Google Scholar
Summers K, McKeon CS, Heying H, Hall J, Patrick W. Social and environmental influences on egg size evolution in frogs. J Zool. 2007;271:225–32.
Article
Google Scholar
Kupfer A, Maxwell E, Reinhard S, Kuehnel S. The evolution of parental investment in caecilian amphibians: a comparative approach. Biol J Linn Soc. 2016;119:4–14.
Article
Google Scholar
Goodwin NB, Dulvy NK, Reynolds JD. Life-history correlates of the evolution of live bearing in fishes. Philos Trans R Soc Lond B Biol Sci. 2002;357:259–67.
Article
PubMed
PubMed Central
Google Scholar
Meiri S. Endothermy, offspring size and evolution of parental provisioning in vertebrates. Biol J Linn Soc. 2019;128:1052–6.
Google Scholar
Baylis JR. The evolution of parental care in fishes, with reference to Darwin’s rule of male sexual selection. Environ Biol Fish. 1981;6:223–51.
Article
Google Scholar
Shine R. Life-history evolution in reptiles. Annu Rev Ecol Evol Syst. 2005;36:23–46.
Article
Google Scholar
Meiri S, Brown JH, Sibly RM. The ecology of lizard reproductive output. Glob Ecol Biogeogr. 2012;21:592–602.
Article
Google Scholar
Meiri S, Bauer AM, Chirio L, Colli GR, Das I, Doan TM, et al. Are lizards feeling the heat? A tale of ecology and evolution under two temperatures. Glob Ecol Biogeogr. 2013;22:834–45.
Article
Google Scholar
Gunderson DR. Trade-off between reproductive effort and adult survival in oviparous and viviparous fishes. Can J Fish Aquat Sci. 1997;54:990–8.
Article
Google Scholar
Vila-Gispert A, Moreno-Amich R, Garcia-Berthou E. Gradients of life-history variation: an intercontinental comparison of fishes. Rev Fish Biol Fisher. 2002;12:417–27.
Article
Google Scholar
Amat F, Meiri S. Geographical, climatic and biological constraints on age at sexual maturity in amphibians. Biol J Linn Soc. 2018;123:34–42.
Article
Google Scholar
Scharf I, Feldman A, Novosolov M, Pincheira-Donoso D, Das I, Böhm M, et al. Late bloomers and baby boomers: ecological drivers of longevity in squamates and the tuatara. Glob Ecol Biogeogr. 2015;24:396–405.
Article
Google Scholar
Shine R. Propagule size and parental care: the “safe harbor” hypothesis. J Theor Biol. 1978;75:417–24.
Article
CAS
PubMed
Google Scholar
Chen CK, Chuang HF, Wu SM, Li WH. Feather evolution from precocial to altricial birds. Zool Stud. 2019;58:24.
Google Scholar
Crawford NG, Faircloth BC, McCormack JE, Brumfield RT, Winker K, Glenn TC. More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biol Lett. 2012;8:783–6.
Article
PubMed
PubMed Central
Google Scholar
Irisarri I, Baurain D, Brinkmann H, Delsuc F, SIre JY, Kupfer A, et al. Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nat Ecol Evol. 2017;1:1370–8.
Article
PubMed
PubMed Central
Google Scholar
Gemmell NJ, Rutherford K, Prost S, Tollis M, Winter D, Macey RJ, et al. The tuatara genome reveals ancient features of amniote evolution. Nature. 2020;584:403–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vitt LJ, Caldwell JP. Herpetology. 4th ed. London: Elsevier; 2013.
Google Scholar
Shine R. The evolution of oviparity in squamate reptiles: an adaptationist perspective. J Exp Zool B Mol Dev Evol. 2015;324:487–92.
Article
PubMed
Google Scholar
Seigel RA, Fitch HS. Ecological patterns of relative clutch mass in snakes. Oecologia. 1984;61:293–301.
Article
PubMed
Google Scholar
Recknagel H, Elmer KR. Differential reproductive investment in co-occurring oviparous and viviparous common lizards (Zootoca vivipara) and implications for life history trade offs with viviparity. Oecologia. 2019;190:85–98.
Article
PubMed
PubMed Central
Google Scholar
Meiri S, Feldman A, Schwarz R, Shine R. Viviparity does not affect the numbers and sizes of reptile offspring. J Anim Ecol. 2020;89:360–9.
Article
PubMed
Google Scholar
Feldhamer GA, Drickamer LC, Vessey SH, Merritt JF, Krajewski C. Mammalogy: adaptation, diversity, ecology. 3rd ed. Baltimore: Johns Hopkins University Press; 2007.
Google Scholar
Tyndale-Biscoe H, Renfree M. Reproductive physiology of marsupials. Cambridge: Cambridge University Press; 1987.
Book
Google Scholar
Hamilton MJ, Davidson AD, Sibly RM, Brown JH. Universal scaling of production rates across mammalian lineages. Proc R Soc B Biol Sci. 2011;278:560–6.
Article
Google Scholar
Peters HR. The ecological implications of body size. New York: Cambridge University Press; 1983.
Book
Google Scholar
Calder WA. Size, function and life history. Cambridge: Harvard University Press; 1984.
Google Scholar
Schmidt-Nielsen K, Knut SN. Scaling: why is animal size so important? Cambridge: Cambridge University Press; 1984.
Book
Google Scholar
Kaplan RH, Salthe SN. The allometry of reproduction: an empirical view in salamanders. Am Nat. 1979;113:671–89.
Article
Google Scholar
Duarte CM, Alearaz M. To produce many small or few large eggs: a size-independent reproductive tactic of fish. Oecologia. 1989;80:401–4.
Article
PubMed
Google Scholar
Rochet M-J, Cornillon P-A, Sabatier R, Pontier D. Comparative analysis of phylogenetic and fishing effects in life history patterns of teleost fishes. Oikos. 2000;91:255–70.
Article
Google Scholar
Barneche DR, Robertson DR, White CR, Marshall DJ. Fish reproductive-energy output increases disproportionately with body size. Science. 2018;360:642–5.
Article
CAS
PubMed
Google Scholar
Kuramoto M. Correlations of quantitative parameters of fecundity in amphibians. Evolution. 1978;32:287–96.
Article
PubMed
Google Scholar
Liedtke HC, Müller H, Hafner J, Nagel P, Loader SP. Interspecific patterns for egg and clutch sizes of African Bufonidae (Amphibia: Anura). Zool Anz. 2014;253:309–15.
Article
Google Scholar
Rahn H, Paganelli CV, Ar A. Relation of avian egg weight to body weight. Auk. 1975;92:750–65.
Article
Google Scholar
Blueweiss L, Fox H, Kudzma V, Nakashima D, Peters R, Sams S. Relationships between body size and some life history parameters. Oecologia. 1978;37:257–72.
Article
CAS
PubMed
Google Scholar
Dunham AE, Miles DB. Patterns of covariation in life history traits of squamate reptiles: the effects of size and phylogeny reconsidered. Am Nat. 1985;126:231–57.
Article
Google Scholar
Meiri S, Feldman A, Kratochvíl L. Squamate hatchling size and the evolutionary causes of negative offspring size allometry. J Evol Biol. 2015;28:438–46.
Article
CAS
PubMed
Google Scholar
Schwarz R, Meiri S. The fast-slow life-history continuum in insular lizards: A comparison between species with invariant and variable clutch sizes. J Biogeogr. 2017;44:2808–15.
Article
Google Scholar
Bakewell AT, Davis KE, Freckleton RP, Isaac NJ, Mayhew PJ. Comparing life histories across taxonomic groups in multiple dimensions: how mammal-like are insects? Am Nat. 2020;195:70–81.
Article
PubMed
Google Scholar
Marshall SD, Gittleman JL. Clutch size in spiders: is more better? Funct Ecol. 1994;8:118–24.
Article
Google Scholar
Poulin R, Hamilton WJ. Ecological determinants of body size and clutch size in amphipods: a comparative approach. Funct Ecol. 1995;9:364–70.
Article
Google Scholar
Arendt JD. Size-fecundity relationships, growth trajectories, and the temperature-size rule for ectotherms. Evolution. 2011;65:43–51.
Article
PubMed
Google Scholar
Sauer JR, Slade NA. Size-based demography of vertebrates. Annu Rev Ecol Syst. 1987;18:71–90.
Article
Google Scholar
James C, Shine R. Life-history strategies of Australian lizards: a comparison between the tropics and the temperate zone. Oecologia. 1988;75:307–16.
Article
PubMed
Google Scholar
Clobert J, Garland T, Barbault R. The evolution of demographic tactics in lizards: a test of some hypotheses concerning life history evolution. J Evol Biol. 1998;11:329–64.
Article
Google Scholar
Meiri S, Avila L, Bauer AM, Chapple DG, Das I, Doan TM, et al. The global diversity and distribution of lizard clutch sizes. Glob Ecol Biogeogr. 2020;29:1515–30.
Article
Google Scholar
Shine R, Greer AE. Why are clutch sizes more variable in some species than in others? Evolution. 1991;45:1696–706.
Article
PubMed
Google Scholar
Meiri S. What geckos are - an ecological-biogeographic perspective. Isr J Ecol Evol. 2020;66:253–63.
Article
Google Scholar
Millar JS. Pre-partum reproductive characteristics of eutherian mammals. Evolution. 1981;35:1149–63.
Article
PubMed
Google Scholar
Allaine D, Pontier D, Gaillard JM, Lebreton JD, Trouvilliez J, Clobert J. The relationship between fecundity and adult body weight in homeotherms. Oecologia. 1987;73:478–80.
Article
CAS
PubMed
Google Scholar
Hamilton MJ, Davidson AD, Sibly RM, Brown JH. Universal scaling of production rates across mammalian lineages. Proc R Soc Lond. 2011;278:560–6.
Google Scholar
Tuomi J. Mammalian reproductive strategies: a generalized relation of litter size to body size. Oecologia. 1980;45:39–44.
Article
PubMed
Google Scholar
Jones KE, Bielby J, Cardillo M, Fritz SA, O’Dell J, Orme CDL, et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology. 2009;90:2648.
Article
Google Scholar
Leutenegger W. Evolution of litter size in primates. Am Nat. 1979;114:525–31.
Article
Google Scholar
Harvey PH, Clutton-Brock TH. Life history variation in Primates. Evolution. 1985;39:559–81.
Article
PubMed
Google Scholar
Jetz W, Sekercioglu CH, Bohning-Gaese K. The worldwide variation in avian clutch size across species and space. PLoS Biol. 2008;6:e303.
Article
PubMed Central
CAS
Google Scholar
Boyer AG, Cartron JLE, Brown JH. Interspecific pairwise relationships among body size, clutch size and latitude: deconstructing a macroecological triangle in birds. J Biogeogr. 2010;37:47–56.
Article
Google Scholar
Bohning-Gaese K, Halbe B, Lemoine N, Oberrath R. Factors influencing the clutch size, number of broods and annual fecundity of North American and European land birds. Evol Ecol Res. 2000;2:823–39.
Google Scholar
Calder WA. The Kiwi and egg design: evolution as a package deal. Bioscience. 1979;29:461–7.
Article
Google Scholar
Ar A, Yom-Tov Y. The evolution of parental care in birds. Evolution. 1978;32:655–69.
Article
CAS
PubMed
Google Scholar
Stearns SC. The influence of size and phylogeny on patterns of covariation among life-history traits in the mammals. Oikos. 1983;41:173–87.
Article
Google Scholar
Yom-Tov Y. The reproductive rates of Australian passerines. Wildl Res. 1987;14:319–30.
Article
Google Scholar
Jones KE, Purvis A. An optimum body size for mammals? Comparative evidence from bats. Funct Ecol. 1997;11:751–6.
Article
Google Scholar
Purvis A. The h index: playing the numbers game. Trends Ecol Evol. 2006;21:422.
Article
PubMed
Google Scholar
Sibly RM, Brown JH. Mammal reproductive strategies driven by offspring mortality-size relationships. Am Nat. 2009;173:185–99.
Article
Google Scholar
Sibly RM, Witt CC, Wright NA, Venditti C, Jetz W, Brown JH. Energetics, lifestyle, and reproduction in birds. In: Proceedings of the National Academy of Sciences. USA; 2012. p. 10937–41.
Warne RW, Charnov EL. Reproductive allometry and the size-number trade-off for lizards. Am Nat. 2008;172:80–98.
Article
Google Scholar
Meiri S, Yom-Tov Y. Ontogeny of large birds: migrants do it faster. Condor. 2004;106:540–8.
Article
Google Scholar
Healy K, Guillerme T, Finlay S, Kane A, Kelly SBA, McClean D, et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc R Soc B. 2014;281:20140298.
Article
PubMed
PubMed Central
Google Scholar
Stark G, Pincheira-Donoso D, Meiri S. No evidence for the “rate-of-living” theory across the tetrapod tree of life. Glob Ecol Biogeogr. 2020;29:857–84.
Article
Google Scholar
Stark G, Tamar K, Itescu Y, Feldman A, Meiri S. Cold and isolated ectotherms: drivers of reptilian longevity. Biol J Linn Soc. 2018;125:730–40.
Article
Google Scholar
de Magalhães JP, Costa J, Church GM. An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J Gerontol A Biol Sci Med Sci. 2007;62:149–60.
Article
PubMed
Google Scholar
Blackburn DG. Saltationist and punctuated equilibrium models for the evolution of viviparity and placentation. J Theor Biol. 1995;174:199–216.
Article
CAS
PubMed
Google Scholar
Andrews RM, Karsten KB. Evolutionary innovations of squamate reproductive and developmental biology in the family Chamaeleonidae. Biol J Linn Soc. 2010;100:656–68.
Article
Google Scholar
Sun Y-Y, Du Y, Yang J, Fu T-B, Lin C-X, Ji X. Is the evolution of viviparity accompanied by a relative increase in maternal abdomen size in lizards? Evol Biol. 2012;39:388–99.
Article
Google Scholar
Bellini GP, Arzamendia V, Giraudo AR. Is xenodontine snake reproduction shaped by ancestry, more than by ecology? Ecol Evol. 2017;7:263–71.
Article
PubMed
Google Scholar
Bellini GP, Arzamendia V, Giraudo AR. Reproductive life history of snakes in temperate regions: what are the differences between oviparous and viviparous species? Amphib-Reptil. 2019;40:291–303.
Article
Google Scholar
Hughes DF, Blackburn DG. Evolutionary origins of viviparity in Chamaeleonidae. J Zool Syst Evol Res. 2020;58:284–302.
Article
Google Scholar
Feldman A, Bauer AM, Castro-Herrera F, Chirio L, Das I, Doan TM, et al. The geography of snake reproductive mode: a global analysis of the evolution of snake viviparity. Glob Ecol Biogeogr. 2015;24:1433–42.
Article
Google Scholar
Myhrvold NP, Baldridge E, Chan B, Sivam D, Freeman DL, Ernest SM. An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles: ecological archives E096–269. Ecology. 2015;96:3109.
Article
Google Scholar
Feldman A. Snake macroecology [PhD Dissertation]. Tel Aviv University; 2015.
Meiri S. Traits of lizards of the world: Variation around a successful evolutionary design. Glob Ecol Biogeogr. 2018;27:1168–72.
Article
Google Scholar
Payne RB. Individual laying histories and the clutch size and numbers of eggs of parasitic cuckoos. Condor. 1973;75:414–38.
Article
Google Scholar
Payne RB. The evolution of clutch size and reproductive rates in parasitic cuckoos. Evolution. 1974;28:169–81.
Article
PubMed
Google Scholar
Schulze-Hagen K, Stokke BG, Birkhead TR. Reproductive biology of the European cuckoo Cuculus canorus: early insights, persistent errors and the acquisition of knowledge. J Ornithol. 2009;150:1–16.
Article
Google Scholar
Göth A, Evans CS. Egg size predicts motor performance and postnatal weight gain of Australian Brush-turkey (Alectura lathami) hatchlings. Can J Zool. 2004;82:972–9.
Article
Google Scholar
Meiri S. Length–weight allometries in lizards. J Zool. 2010;281:218–26.
Article
Google Scholar
Feldman A, Meiri S. Length–mass allometry in snakes. Biol J Linn Soc. 2013;108:161–82.
Article
Google Scholar
Feldman A, Sabath N, Pyron RA, Mayrose I, Meiri S. Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Glob Ecol Biogeogr. 2016;25:187–97.
Article
Google Scholar
Meiri S. Evolution and ecology of lizard body sizes. Glob Ecol Biogeogr. 2008;17:724–34.
Article
Google Scholar
Uetz P. The reptile database; 2020. http://reptile-database.reptarium.cz. Accessed 1 Oct 2020.
Gill F, Donsker D. IOC world bird list; 2020.
Burgin CJ, Colella JP, Kahn PL, Upham NS. How many species of mammals are there? J Mammal. 2018;99:1–14.
Article
Google Scholar
Chamberlain S, Szoecs E, Foster Z, Arendsee Z, Boettiger C, Ram K, et al. Taxize: taxonomic information from around the web. R package version 0.9. 92. 2020.
Uyeda JC, Zenil-Ferguson R, Pennell MW. Rethinking phylogenetic comparative methods. Syst Biol. 2018;67:1091–109.
Article
PubMed
Google Scholar
Labra A, Pienaar J, Hansen TF. Evolution of thermal physiology in Liolaemus lizards: adaptation, phylogenetic inertia, and niche tracking. Am Nat. 2009;174:204–20.
Article
PubMed
Google Scholar
Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, et al; 2014. http://R-Forge.R-project.org/projects/caper/. Accessed 1 Oct 2020.
Upham NS, Esselstyn JA, Jetz W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 2019;17:e30000494.
Article
CAS
Google Scholar
Tonini JFR, Beard KH, Ferreira RB, Jetz W, Pyron RA. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol Conserv. 2016;204:23–31.
Article
Google Scholar
Colston TJ, Kulkarni P, Jetz W, Pyron RA. Phylogenetic and spatial distribution of evolutionary diversification, isolation, and threat in turtles and crocodilians (non-avian archosauromorphs. BMC Evol Biol. 2020;20:81.
Article
PubMed
PubMed Central
Google Scholar
Cooney CR, Bright JA, Capp EJ, Chira AM, Hughes EC, Moody CJ, et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature. 2017;542:344–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slavenko A, Tallowin OJ, Itescu Y, Raia P, Meiri S. Late Quaternary reptile extinctions: size matters, insularity dominates. Glob Ecol Biogeogr. 2016;25:1308–20.
Article
Google Scholar
Ives AR. R2s for correlated data: phylogenetic models, LMMs, and GLMMs. Syst Biol. 2019;68:234–51.
Article
PubMed
Google Scholar
Rosler H, Wranik W, Kaiser H. Sperm retention in Pristurus flavipunctatus Ruppell, 1835 (Squamata: Sphaerodactylidae), with a brief review of sperm storage in geckos. Herpetol Notes. 2017;10:537–45.
Google Scholar
Cree A, Cockrem JF, Guillette LJ. Reproductive cycles of male and female tuatara (Sphenodon punctatus) on Stephens island New Zealand. J Zool. 1992;226:199–211.
Article
Google Scholar
Shoshani J, Eisenberg JF. Elephas maximus. Mamm Species. 1982;182:1–8.
Article
Google Scholar
Howard M. Loxodonta africana (On-line). Animal Diversity Web; 2017. https://animaldiversity.org/accounts/Loxodonta_africana/. Accessed 1 Oct 2020.
Rahn H, Ar A. The avian egg: incubation time and water loss. Condor. 1974;76:147–52.
Article
Google Scholar
Köhler G. Incubation of reptile eggs. Malabar: Krieger Publishing Company; 2005.
Google Scholar
Jameson EW. Patterns of vertebrate biology. Dordrecht: Springer Science & Business Media; 2012.
Google Scholar
Ernest SKM, Enquist BJ, Brown JH, Charnov EL, Gillooly JF, Savage VM, et al. Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecol Lett. 2003;6:990–5.
Article
Google Scholar
Congdon JD, Gibbons JW. Morphological constraint on egg size: a challenge to optimal egg size theory? Proc Natl Acad Sci USA. 1987;84:4145–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rollinson N, Brooks RJ. Optimal offspring provisioning when egg size is “constrained”: a case study with the painted turtle Chrysemys picta. Oikos. 2008;117:144–51.
Article
Google Scholar
Janzen FJ, Warner DA. Parent–offspring conflict and selection on egg size in turtles. J Evol Biol. 2009;22:2222–30.
Article
CAS
PubMed
Google Scholar
Packard GC, Tracy CR, Roth JJ. The physiological ecology of reptilian eggs and embryos, and the evolution of viviparity within the class Reptilia. Biol Rev Camb Philos Soc. 1977;52:71–105.
Article
CAS
PubMed
Google Scholar
Simkiss K. Calcium metabolism and avian reproduction. Biol Rev. 1961;36:321–67.
Article
CAS
Google Scholar
Simkiss K. The sources of calcium for the ossification of the embryos of the giant leathery turtle. Comp Biochem Physiol. 1962;7:71–9.
Article
CAS
PubMed
Google Scholar
Stone MD. Effects of season, sex, and age on the calcium physiology and bone dynamics of turtles. Turtles: Oklahoma State University; 2009.
Google Scholar
Racey PA, Entwistle AC. Life-history and reproductive strategies of bats. In: Crichton EG, Krutzsch PH, editors. Reproductive biology of bats. New York: Academic Press; 2000. p. 363–414.
Chapter
Google Scholar
Barclay RM, Harder LD. Life histories of bats: life in the slow lane. Bat Ecol. 2003;209:253.
Google Scholar
Rensch B. Some problems of geographical variation and species formation. Proc Linn Soc Lond. 1938;150:275–85.
Article
Google Scholar
Moreau RE. Clutch-size: a comparative study, with special reference to African birds. Ibis. 1944;86:286–347.
Article
Google Scholar
Lack D. The significance of clutch-size. Ibis. 1947;89:302–52.
Article
Google Scholar
Ricklefs RE. Geographical variation in clutch size among passerine birds: Ashmole’s hypothesis. Auk. 1980;97:38–49.
Google Scholar
Iverson JB. Correlates of reproductIve output in turtles (order Testudines). Herpetol Monogr. 1992;6:25–42.
Article
Google Scholar
Grenyer R, Orme CDL, Jackson SF, Thomas GH, Davies RG, Davies TJ, et al. Global distribution and conservation of rare and threatened vertebrates. Nature. 2006;444:93–6.
Article
CAS
PubMed
Google Scholar
Milewski AV. A comparison of reptile communities in relation to soil fertility in the Mediterranean and adjacent arid parts of Australia and Southern Africa. J Biogeogr. 1981;8:493–503.
Article
Google Scholar
Morton SR, James CD. The diversity and abundance of lizards in arid Australia: A new hypothesis. Am Nat. 1988;132:237–56.
Article
Google Scholar
Pianka ER. Desert lizard diversity: additional comments and some data. Am Nat. 1989;134:344–64.
Article
Google Scholar
Morton SR, Emmott AJ. Lizards of the Australian deserts: Uncovering an extraordinary ecological story. Hist Rec Aust Sci. 2014;25:217–26.
Article
Google Scholar
Roll U, Feldman A, Novosolov M, Allison A, Bauer AM, Bernard R, et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat Ecol Evol. 2017;1:1677–82.
Article
PubMed
Google Scholar
Minias P, Włodarczyk R. Avian developmental rates are constrained by latitude and migratoriness – A global analysis. J Biogeogr. 2020;47:2156–67.
Article
Google Scholar
Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA. Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev. 2007;87:1175–213.
Article
CAS
PubMed
Google Scholar
Capdevila P, Beger M, Blomberg SP, Hereu B, Linares C, Salguero-Gomez R. Longevity, body dimension and reproductive mode drive differences in aquatic versus terrestrial life history strategies. Funct Ecol. 2020;34:1613–25.
Article
Google Scholar